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Resumen

En una red los nodos representan estaciones, almacenes, centros de distribucion y clientes y
circulan tanto materiales como informacion, por lo que una herramienta utilizada para apoyar la
toma de decisiones es el modelo de flujo a costo minimo que toma en cuenta Unicamente costos
de transporte. En la realidad los nodos prestan un servicio el cual requiere un tiempo de servicio,
la atencion sigue una disciplina y ademas se forma una fila de espera. En este trabajo se propone
una modificacién del modelo de flujo a costo minimo para la optimizacion en redes de lineas de
espera. Se resolvieron varios casos donde se observa un grado de exactitud aceptable en el
calculo del tiempo de ciclo y trabajo en proceso. El trabajo es de interés para los administradores
y/o responsables de las cadenas de abasto y util para la toma de decisiones a mediano y largo

plazo.

Palabras clave: flujo en redes; cadena de abasto; redes de colas; tiempo de ciclo; trabajo en

proceso

Recepcion: 19-01-17 Aceptacion: 05-03-17

Abstract
In a network the nodes represent stations, warehouses, distribution centers and customers and not
just materials but also information circulate, so the minimum cost flow model, that only takes
transport costs into account is one of the tools used to support the decision-making. In reality, the
nodes provide a service which requires a service time, the servicing follows a discipline and also
a queue is formed, generating the respective service and queuing costs. A modified version of the
minimum cost flow model is proposed in this paper for the optimization of the flow in a queuing
network. A variety of cases were solved. An acceptable level of accuracy was observed in the
calculation of the time cycle and work in progress. The results indicate that the optimum solution
tends to balance the workload along the network. This paper is of interest to administrators and

people in charge of supply chains and is useful for decision-making in the medium or long time.

Keywords: network flow, supply chain, queueing networks, cycle time, work in process
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Numerical analysis of minimum cost network flow with queuing stations: the M/M/1 case

Introduction

In industry and services, supply systems have a high degree of complexity, owing to the existence
of the multiple relations that each element has with others within the same system. In
consequence, it is often observed that work should be done with a network of stations/plants,
warehouses/suppliers, containers/distribution centers and customers. Throughout such a network
not only materials but also information circulates (Bhaskar and Lallement, 2010).

Some examples of the decisions that the administrators of these systems have to take are: how
much product should be manufactured or how much should be sent from each workplace to the
following link in the chain, with the total cost of dispatch being the common performance
measurement (Figure 1). Consider also a cross-docking system where goods and materials are
transferred without actually entering the warehouse or being put away into storage (Kulwiec,
2004); a manager must determine the service time or the number of servers that reduces the

residence time within the facilities, in other words the cycle time in the system.

> Nictri Customer
Supplier 1 Plant 1 ® Distributor 1 > 1 I
Supplier 2 \

Supplier 3 » Plant3 I

Suppliers Manufacturing Distribution Customers

Customer

Distributor 2

/
/

Customer

Distributor 3

v/ NS

L

Figure 1. Network of factories, warehouses and customers
Optimal network design plays an important role in the supply chain operation, as good logistic
distribution network can save transportation costs as well as improve service levels (Marmolejo,
Rodriguez, Cruz-Mejia & Saucedo, 2016). The minimum cost network flow model is a useful

tool for analyzing these types of systems.
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It is worth mentioning that the nodes in a network, such as the one mentioned above are usually
stations that provide a service, in other words, we are talking about queuing networks. Analytical
queuing models are used for determining properties such as work in progress, time in the system
(cycle time), congestion of the system, measuring the quality of the service as well as quantifying
the operating cost of said systems.

Networks may be open (the customers can enter and leave through any station on the network) or
closed (the customer circulates around the network). Queuing network models are employed to
represent not only production or manufacturing lines or, but also service and supply chain
systems (Bolch, Greiner, de Meer and Trivedi, 2006).

Problem

The minimum cost network flow model only takes the transport costs into account; however
every node on the network is often a station that provides a service (a factory, a warehouse). This
operation generates a service cost (the products have to be manufactured) and a cost for the time
taken to be served (the orders follow a service discipline and a queue is formed). In this context,
managers and practitioners also need information about cycle time, work-in-process as well as
the availability of resources at plants and warehouses. For a given topology of plants, warehouses
and demand centers, it is evident that the solution obtained by a minimum cost flow model will
change if each node is considered as a queueing system but, how much is the difference?; how
sensitive is the solution if practitioners include transportation cost, waiting cost and service cost;
what a practitioner and a manager can expect if they wish to measure supply chain performance

as queueing networks.

Background

Most papers on queuing networks focus on the determination of the properties of the networks
and use both analytical means and simulation. These models can be used for finding properties,
control, planning and optimization, which is the case with this paper.

In the paper of Pourbabai, Blanc and van der Duyn Schouten (1996) a modified version is
presented of the minimum cost flow model together with the respective version of the maximum
network flow problem with stations where queues form. Their paper proposes the probability of

meeting service levels as a constraint.
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Kerbache and MacGregor Smith (2000) propose a mathematical programming model that
determines the optimum path that maximizes the throughput, the properties are calculated by
applying the Generalized Expansion Method. Given that this is a mixed integer nonlinear model,
an algorithm is developed to find good solutions, Yenisey (2006) applies concepts from
Pourbabai et al (1996) to construct a mathematical programming model for MRP systems.
MacGregor Smith (2011) considers M/G/c, M/G/c/c systems and proposes a procedure for
finding the optimum flow paths in a queuing network: In this case, the objective function is the
system’s throughput and is applied to the modeling of passenger flow in underground transport
systems.

Morabito, de Souza and Vézquez (2014) propose an analytical method for the shortest path
problem in G/G/c queuing networks as well as the application of equations to improve the
accuracy of the calculations of the system’s properties, while, when applicable, the objective
function also maximizes the throughput of the system. van Woensel T., Cruz F.R.B. (2014)
extended the model to G/G/c/K networks to determine the shortest route in systems with multiple
Sservers.

Some examples of applied cases we can mention are Bhaskar and Lallement’s paper (2010) for
the analysis of the supply chain of an Indian textile company, Srivathsan and Kamath (2012);
they propose a model for the analysis of supply chains, but raise the idea of using the model to
plan and find the optimum values of decision variables. He and Hu (2014) propose a model for
decision-making in disaster prevention systems for the Shanghai area, while Beard and
Chamberlain (2013) employ the principles proposed in Pourbabai. et al (1996) for the analysis of
the flow of information in computer network systems.

Other analytical techniques for the modelling of supply chains are Petri Nets, Series parallel
graphs, Markov chains and system dynamics (Srinivasa &Viswanadham, 2001).

This paper’s contributions are:

1. This paper is a variant on the proposal of Pourbabali, et al (1996), but in this case the queuing
and node operating costs are included in the objective function.

2. It differs from Morabito, Souza and Véazquez’s paper (2014) in that different versions of the
cost model are employed and assessed; the analysis is, for the moment, confined to the fact that

the service time and demand follow an exponential distribution.
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3. We apply the decomposition principle to obtain the performance measures. MacGregor Smith
(2011), Morabito, et al.(2014), or van Woensel T., Cruz F.R.B. (2014) use General Expansion
Method.

4. We are contributing with an approach for the process of modeling and analysis of a supply
chain as a network of queues.

5. We obtain an optimal solution and calculate the work in process and cycle time of proeuction
orders.

6. Numerical examples are solved and the results are compared with those obtained from a
conventional minimum cost flow model. Simulation is used to validate analytical results of cycle
time and work-in-process.

This paper is of interest to administrators and/or people in charge of supply chains, purchasing
schedulers or production schedulers and is useful for decision-making in the medium or long
time. With this model we get information about the cycle time, the work in process and the
congestion at each station as well as the quantity of a product that must be sent to each customer
in the network, minimizing the total operating cost of the system, this approach takes ino account

the uncertainty of demand and service time of plants and distributors.

The minimum cost network flow problem

Consider a directed network that consists of a finite set of nodes N and a set of directed arcs A
that join pairs of N nodes. Arc (i, j) is said to be incident to nodes i and j and is directed from
node i to node j. Every node i is assigned a number f; that represents the available supply of an
article (f > 0) or the demand for some article (f < 0). Nodes with supply are known as source
nodes and the demand nodes are known as destination nodes. If fi= O then it is a transfer node,
given that there is no supply or demand at said node.

Each arc is associated with a value x;; that is the flow of material from node i to node j and a

constant cjj that is the cost of circulating through said arc. We shall that the total supply and the

total demand are equal, in other words Z f. =0. The minimum cost network flow problem can

be posed as follows: Shipping the available supply through the network in order to satisfy the
demand at a minimum cost. Mathematically, this problem is expressed as follows:
Minimize:
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n m

2 2Ci% (1)
i=1 j-L

Subject to:
DX =Y X = f,Vi=12,..,n (2)
i=1 k=1
X. >0 (3)

ij =

The constraints (2) are called network flow conservation equations. In conservation equations,

the term ZL X;; represents the total flow that leaves node i towards any node j, while the term

ZL X, 1s the flow that enters node i from any other node k.

The equations require the net flow that leaves node i to be equal to fi. Finally, it must be pointed
out that there can be flow capacity through the arcs.

The minimum cost flow model can be used to represent a logistics network where people and/or
materials move through various points, the movement of locomotives, communications systems,
oil pipelines, tanker schedules, etc (Bazaraa, Jarvis and Sherali, 1974, Wagner, 1975).

The minimum cost network flow problem can be posed as a linear programming problem and the
simplex method can be applied to find the optimum solution for a particular instance.

One of the assumptions in the aforementioned flow model is that no operation is done in the
nodes and that the material flows without undergoing any kind of delay. However the people in
charge of the administration and planning of the operations must take into account the time
customers and materials spend in a queue at the station while waiting for the corresponding
service; the time required to process a product, order or job; and the cost of the service, while
they must also determine and analyze the system’s properties such as the amount of work in
process (WIP) and the cycle time in the system (from the time when the order is received until it

is delivered to the end customer).

The aforementioned properties are performance measurements for queuing networks. A summary

of the method for calculating said properties is given below.

Nova Scientia ISNN 2007 - 0705, N° 18 Vol. 9 (1), 2017. pp: 257 — 289
- 263 -

Nova Scientia



Hernandez-Gonzalez, S. et al.

Queuing networks

A queuing network is one where there are at least two stations connected to each other (Figure 2).
Each node on the network represents a resource (for example a station or a factory). In this paper
we use the following premises:

1. The stations have infinite capacity in the line.

2. Customers arrive at the network at the rate of A customers per unit of time and travel from one
station to another within the network.

3. Each station has s; servers with a capacity of pi customers per unit of time.

CT,
WIP,
M
' > 1 7“3
L
N CT,
2

WIP, CTs
WIP;

Figure 2. Queuing network

Properties of queuing networks.

Assume a network of n stations, the transit of the customers from one station to another is defined
by the transit matrix P where each element pj; is the probability that the customer goes from
station i to station j. P is a square matrix. Assume that, through node i, yoi customers per unit of
time can enter the network from the exterior. Therefore the total flow to any node i on the
network satisfies the following expression (Buzacott and Shanthikumar, 1993, Curry and

Feldman, 2011, Bolch et al, 2006):
m
A=Va+D Py A 1=12,...,m @)
j=1

Expressing this result in a matrix form:

r=y+P"A (5)
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Where y and A are the flow column vectors from the exterior to each node and the entry flow to
the node, respectively and PT is the transpose of the probability matrix. The system can be solved
to obtain the entry flows to each station A.

n=(1-P" )y (6)
Where 1 is the identity matrix. As can be observed, given y and P, the equation calculates the

entry flows to each station on the network.

Quadratic coefficients of the entry flows
After the equation (4), the entry flow to each station is made up by two elements: the entry from
outside to the system through node i and the flow from any station within the network.

Assume that the external flow to a node j has a coefficient of variation that is denoted as C2(0, j),
likewise, the coefficient of variation for the flow from a node k to node j is denoted asc?(k, j).

If the station has s servers, and each customer requires !/ units of time to be served, with a
coefficient of variation Cfs(j), also if each station that makes up the network is stable, in other

words it holds thatp:TW% <1(the used capacity or congestion of the work station) therefore

the quadratic coefficients of variation in the entry flows to each station are obtained with the

following approximation:

A pkj(l_pjzkaz(k)—i—
. 70' . u K pk'
Ci(i)=-2Ci0,j)+ > == CZ(k)+.[s, -1 O
i = Pyot| ——————— |+1-p
B

Once again this approximation can be expressed in matrix form and is solved as a system of
linear equations, whose solution shall be:

C:=(1-Q)'B (8)

Where each element of the matrix Q is calculated as follows:

ki 1
i

And each element of the vector p is obtained with:
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[ pkjpkz[CT(k)j;kaklj +1- pkj:l (10)

Once the flows and their respective coefficient of variation have been obtained, the next step will

B =C2(j)= ““c 0, j)+

J

&MB

Nova Scientia

consist of assessing the properties of each one of the network’s station applying the
decomposition principle. The expressions for the cycle time of station i and variability of

departure from station i are:

Cs ., +C¢ _
CTiz( d. 12 s,Jx(lf'prE[Tsyi]+E[Tsyi] (12)
Cdz,i z(:I-_loi )Cj,i—leriZCsz,i (12)

A summary of the procedure is given in figure 3 (Buzacott and Shanthikumar, 1993, Curry and
Feldman, 2011).

1. Read the vector of service times ts, the vector of coefficient of variation
Ci? the vector of entry flows to each station y and the vector of
coefficients of variation Ca? at the entry.

2. Read probability matrix P

3. Calculate the vector of entry flows A at each station

4. Assess p for each station, if p > 1 for any station, stop, the network is
unstable. Otherwise go to step 5.

5. Calculate the vector of quadratic coefficients of variation Ca? at the
entry.

6. Calculate the properties of each station: Work in process, cycle time.

Figure 3. Procedure for calculating the properties of a queuing network

Cost function in a queuing network

The operating cost of a queuing network is expressed by the following equation:

OpCost = OC = ServerCost + WIPCost + FlowCost (13)
OC = ZCS,(T J+ZCWIP,WIP +ZZC” i (14)
=1 i=l j=1
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Conventionally, only the service cost and queuing cost are included in the operating cost (OC) in
a queuing network. Likewise, only the network flow cost is included in a minimum cost flow
problem.

Equation (13) includes the three terms: the cost arising from the operation of the servers

(ZCS(% ) ), the cost of having inventory in process in the station (ZCW,PiWIPi ) and
S,i '

finally the cost of transiting from station i to station j (ZZcij'xij ).

As can be appreciated, flow xij between pairs of nodes is calculated using (4). Assuming that the
external flows only appear at the supply nodes, then the term yoi is zero, and the flow for any

node other than the supply nodes is:

Xy = APy (15)

Optimization model
Assume that we have a network with a set of nodes neN and set of arcs ac A. There is a set of

nodes that represent the customers and generate a demand of A units per unit of time; said

demand follows a probability distribution G.

The material receives a transformation at each node that, on average, requires T, units of time

and follows a probability distribution G. Therefore this is a network with G/G/s type stations. If

C? =1 and c?=1, then the station is Markovian or M/MIs, in accordance with the notation of

Kendall.

There is no external flow to the demand nodes. Moreover, reflows are only considered for
representing reprocesses, whereas exits from the system through any node other than the demand
nodes are not considered.

The flow between the network’s stations can be represented as a probability matrix P.

There is a service cost, Service Costi, for serving or producing a product unit, and there is also a
cost per unit of work in process, Work in process Costi. Finally there is also a cost for transiting
from one station to another cij. The proposed optimization model is as follows:

Minimize:

oc=Y Cs,{TS‘} ICTRLLED AL (16)
s i=

i=1 ji i i=1 j=1
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Subject to:

inj_zxki =f ,vi=12...,n (17)
i1 k=l

P < p < i (18)
pi <Py <py” (19)
> p; =1 (20)
i=1

X; =7oi t Z Pri (21)

kL

The quantity of material that should circulate between pairs of nodes or stations should be
determined in such a way as to minimize the value of operation cost (16). It is worth mentioning

that in the model, the decision variable is the probability or fraction p, of material that travels

through the arc, with which the flow through the arc is calculated afterwards.

The flow is constrained to the entry — throughput balance at each node (17) being satisfied, as
well as to the flow in the system being such that the congestion or used capacity at each station p
(used capacity or congestion) are fulfilled or, if not, to p < 1 for all the stations (18).

Likewise, the way in which the flow is directed through the network is constrained to the range
given in (19). In the model, the constraint (20) ensures that the material does not leave the
network through any node that is not a demand node. In any event this constraint can be modified
if necessary. The flows are calculated using (21).

The problem of routing customers, packets and other entity flows in finite queueing networks is
an integer nonlinear programming. Our model is a variant of the Optimal Routing Problem in
queueing networks which is known to be NP-hard (MacGregor Smith and Daskalaki, 1988,
Kerbache and MacGregor Smith, 2000). The proposed model can incorporate constraints for the
work in process or the cycle time. It is also feasible that the service time of one or more stations
and the number of servers are also decision variables.

It is worth mentioning that, like any model, it is necessary to be careful to take the necessary
factors into account and thus avoid situations such as getting a very complex model that does not

have a feasible solution.
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This model can be applied to the analysis and solution of problems involved with the planning of
supply chain operations, using a networks approach and properties, such as the cycle time, work

in process, the load at the stations or production or processing centers.

Implementation on a spreadsheet

It was necessary, for the study, to construct a spreadsheet template using the steps of the
aforementioned figure 3.

The template automatically calculates the total entry flows of each node using the equations (4) —
(6); the flows through each arc with their respective cost; the costs of the stations; cycle time and
amount variability of departures of each station; as well as the total operating cost of the system
using the equations (7) — (12).

Work in process of each station is obtained with Little’s Law:

WIP = ACT (22)

The template allows us to model systems that have up to 10 stations with a network arrangement

or else with a pure series arrangement. Further details will be encountered in Appendix 1.

Numerical examples

A numerical analysis was carried out of several cases with a proposed minimum cost flow model,
estimating properties (Work in process and cycle time), while the results were validated using
simulation.

All cases were built taking into account that the maximum number of stages that are considered
in mathematical models of supply chains are four (Olhager, Pashaei and Sternberg, 2015). Case
A is a conventional minimum cost flow model without operation at the nodes. In series B, the
minimum cost flow model with operation at the nodes was studied with and without costs (Table
1).

In case B1, decision variables are the probabilities pi; of the customer going from node i to node j.
In case B2, the decision variables are pij as well as the service time at each station or node. In
case B3, which is the model with service cost and queuing cost, the decision variable is the

fraction pjj that travels between pairs of nodes.
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Table 1. Cases studied

Nova Scientia

Operation Cost of
at the | Cost service . i
Case Decision variable
nodes flow and
gueuing
A No Yes No Flow at each arc xij
Fraction pjj that is sent from node i
Bl Yes Yes No to node j. The flow is calculated
using (13).
Fraction pjj that is sent from node i
to node j and service time at each
B2 ves Yes No node. The flow is calculated using
(13).
Fraction pjj that is sent from node i
B3 Yes Yes Yes to node j. The flow is calculated
using (13).
Fraction pjj that is sent from node i
to node j and service time at each
B4 ves ves Yes node. The flow is calculated using
(13).

Finally, in model B4, the decision variables are the fraction pj; that travels between pairs of nodes

and the service time at each station or node.

To validate each analytical result from series B (flows, WIP and cycle time), we used a
simulation model that was constructed in the Arena simulation software. Five independent
replications were done. The run length was chosen to obtain a 95% confidence interval of WIP

and cycle time. The details of the model and the data for the repeated samples are given in table

2. An example is given of the model in figure 4 as an illustration.
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Suppliers Manufacturing Distributors Customers

> . _— Customer
Order Supplier 1 Manuflacturer Distributor 1 1
Order >—' Supplier 2 Manufzacturer Distributor 2 oY Cust;)mer

Manufacturer
3 A/ Customer

3

y

Figure4. Example of the simulation model for validating the results of series B

Table 2. Characteristics of the simulation model

Simulation time (95% confidence) | 5000 days

Replications 5 per series B case

Calculated properties Work in process and cycle time

Probability function for service | Exponential

time

Probability function for demand Exponential

Series A
Consider a system such as that of figure 5. Nodes 1 and 2 are the sources of the supply, nodes 3
and 4 are manufacturing nodes, 5, 6 and 7 are transfer nodes and nodes 8 and 9 are the demand

nodes.
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Suppliers Manufacturing Distributors Customers

Figure 5. Directed network for case A

The costs per unit transported between pairs of nodes are given in table 3. The demand at nodes 8

and 9 is 30 units, while the supply available at nodes 1 and 2 is 30 units.

Table 3. Origin — destination costs

1 |2 3 4 5 6 7 8 9

1 $ 25.0 | $50.0

2 $33.0 |$29.0

3 $22.0 [$17.0 |$21.0

4 $20.0 {$20.0 |$19.0

5 $20.0 |$12.0
6 $14.0 |$13.0
7 $12.0 |$11.0

On solving the minimum cost flow model, using Solver and the data, we get the solution given in
figure 6: 30 units should be sent from node 1 to node 3, and 30 units from node 2 to node 4. 30

units shall be sent from node 3 to node 5, 30 units shall be sent from node 4 to node 7.
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Suppliers Manufacturing Distributors Customers

Figure 6. Solution to case A

Finally node 5 shall send 30 units to demand node 9 and node 7 shall supply 30 units to demand

node 8 (Table 4). The operating cost is $3570.

Table 4. Flow per arc

Arc 1-3 |1-4 2-3 |2-4 |3-5 3260357 . |4-5
Flow 30 0 0 30 30 0 0 30
Arc 4-6 |4-7 |5-8 |5-9 [6-8 |6-9 |7-8 |7-9
Flow 0 0 0 30 0 0 30 0

Series B. Minimum cost flow model with operation at the nodes
The analysis of the system is presented below, incorporating the data about the operation at each

node, as well as the constraints on flow and use of the capacity.

Case B1
Consider the above minimum cost flow problem, taking into account that the nodes are stations

where the customers receive a service, the data corresponding to the service time at each station

are given in table 5.
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Table 5. Service time and standard deviation of the service time at each node

Node |1 2 3 4 5 6 7
Ts 0.01 |0.028 {0.027 |0.03 |0.06 |[0.03 |0.03
OTs 0.01 |0.028 {0.027 |0.03 |0.06 |[0.03 |0.03

We will assume, in this case, that the service times are exponentially distributed, there are only
transport costs between stations and that there is only one server at each node.
The decision variable is fraction pij which must be sent from station i to station j, this value is

used to calculate amount of the flow of material between each station (Table 6).

Table 6. Constraints of case B1

0.25< p, <0.90,i=12,345,6,7 Used capacity constraint

0.25< p,;<1,0.25<p, <1
0.25< p,; <1,0.25< p,, <1

0.25< Pss <1, 0.25< Psg <1,0.25< Ps; <1 Constralnts for the
0.25< p,s <1, 0.25< p,<1,025<p,, <1 proportion that has to
0.25< pg, <1, 0.25< p, <1, move through arc ij

0.25< pgg <1,0.25< pgy <1,
0.25< p,3<1,0.25< p,y <1,

- (ﬂs Psg + PeAes + A7 p78) =-30 Node 8 de-mand
constraint
B Node 9 demand
- (15 Psg + /’Ls Peo + 17 p79) =-30 Constraint
Ay Pys + A4 Py, =30 Constraint for supply
Ay Pz + A, P24 =30 nodes 1 and 2
Ay Pss + A3 Pas + A5 Psy — (A Py + A, Pp3) =0 Node 3 flow constraint.
Ay Pas + Ay Pas + A4 Py — (ﬂ’l Py + /12 pz4) =0 Node 4 flow constraint.

The constraints for the value of pij are given in table 6. For this example in particular, the used

capacity is constrained to the (25% — 90%) range.

In this case we assume that the total demand of nodes 8 and 9 is shared out equally between

nodes 1 and 2 (this could be the result of a decision taken beforehand by the person in charge in
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accordance with some prior criterion) in consequence, the entry flow to said stations is 30 each.
The same table 6 shows the flow constraints for the supply nodes 1 and 2, as well as the demand
nodes 8 and 9. Of transfer nodes 3 — 7, only the equations corresponding to nodes 3 and 4 are

shown.

The flows between stations were obtained by running the Solver complement and are given in

table 7.
Table 7. Flow per arc

Arc 1-3 |1-4 2-3 |2-4 3-5 3-6 3-7 4-5
Fraction |0.750 |0.250 |0.25 |0.75 |0.25 |0.50 [0.25 |0.25
Flow 22.500 |7.500 |7.50 |[22.50 |7.5 15 750 |7.50
Arc 4-6 |4-7 |5-8 |5-9 |6-8 |6-9 |7-8 |7-9
Fraction |0.25 |0.50 0.250 |0.750 [0.41 |0.59 |0.75 ]0.25
Flow 7.50 15 3.75 [11.25 [9.37 13.13 |16.88 |5.63
Operating cost $3,776.25

The first significant point is the fact that the flow between stations is not an integer value, unlike
a conventional minimum cost flow model. In the new solution, unlike Case A, the flow is

distributed throughout the network (Figure 7).

Suppliers Manufacturing Distributors Customers

Figure 7. Solution to case B1
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The flow between stations requires the sending of material from station 1 to 4 and from station 2
to 3. The same happens with the flow from3to 5,3t06,3t07,4t06,4t0o7,5t08,6to 8and 7
t0 9.

The operating cost obtained, being $3,776.25, is higher, which represents a difference of $206.25
or 2.8% in respect of case A. It is worth mentioning that this is normal as, owing to the conditions
imposed on each node and the flow between stations, arcs were employed that had not been
considered, thus raising said cost.

Additional information is obtained with model B1 for the administrators and decision-makers:
We observe, for example, that station 1 is only used at 30% of its used capacity ( or congestion);
stations 2 and 3 are used at 84 and 81% of their capacity, respectively; while stations 6 and 7 are
used at 67.5% of their capacity (Table 8).

Table 8. Properties in each node: analytical vs simulation

Sta. | Capacity |Cycle Work in | Capacity |Cycle time | Work in
(%) time process (%) (days) process
(days) (units) (units)
Analytical Simulated
1 130.0% 0.014 0.429 30.79% 0.014 0.4375
2 |84.0% 0.175 5.250 86.18% 0.239 7.34
3 181.0% 0.142 4.263 81.32% 0.143 4.33
4 190.0% 0.300 9.000 90.81% 0.277 8.44
5 190.0% 0.600 9.000 90.15% 0.539 8.33
6 167.5% 0.092 2.077 66.70% 0.091 2.055
7 167.5% 0.092 2.077 65.89% 0.085 1.935
Property Analytical |Simulated |Difference
Work in process |32.10 32.91 2.46%
Total Cycle time |0.535 0.5428 1.4%

One relevant factor is the identification of the bottleneck. One accepted definition establishes that
the bottleneck is the station where the most work in process is to be observed (Lawrence and
Buss, 1995). In this example, stations 4 and 5 can both be considered to set the limits for the

production capacity, as they are used at 90% of their capacity.
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The cycle time for the process is the total time that elapses from the moment when the production
order is received until it arrives at its destination with the customer: In the example, the total
cycle time is 0.535 days and if we assume a basis of 1 month= 30 days, then the cycle time will
be 16.05 days.

The amount of work (customers or production orders queuing in front of the station waiting for
service) in the overall process is 32.096.

As regards the properties obtained by simulation, the work in process obtained by the analytical
method differs by -2.46% in respect of results of the simulation, while the cycle time differs by-
1.43%.

Case B2
The flows and cost that were found by analytical methods are given in table 9.In this case we
observe that on being compared with case B1, the solution obtained presents several changes in

both the flows and the properties of the system.

Table 9. Flow at each node

Arc 1-3 1-4 2-3 2-4 | 3-5 3-6 | 3-7 | 4-5
Fraction | 0.750 | 0.250 0 1 0.25 0.50 0.25 0.25
Flow 22.500 | 7.500 0 30 5.63 | 11.25 | 5.63 9.38

Arc 4-6 4-7 5-8 5-9 | 6-8 6-9 7-8 7-9

Fraction | 0.25 0.50 0.250 | 0.750 | 0.386 | 0.617 | 0.75 0.25

Flow 9.38 | 18.75 3.75 11.25 | 7.97 | 12.66 | 18.28 | 6.09
Operating cost $3744.78

In the flows we observe, for example, that the arc 2 — 3 is not used. The total operating cost,
which in this case is only the flow between pairs of nodes, is less in respect of case B1,

presenting a reduction in cost of 0.84%.

As regards the performance measurements, case B2 presents a bottleneck at stations 4 and 5,
where both are employed at 90% of their capacity, also there is a drop in the work in process and

time cycle (Table 10).
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A saving of 5.7% is obtained in the cycle time and there is a reduction of 5.67% in the work in
process with respect to case B1.The analytical results for the work in process and the cycle time
differ by -4.24% and -4.30%, respectively.

Table 10. Optimum service time and properties at each node: analytical vs simulation

Optimum . .
seFr)vice Capacity |Cycle time Work in Capacity C_:ycle Work in
time (%) (days) E’Jﬁfte;s (%) Egge process
Sta. | (days) ys) (units)
Analytical Simulated
1 |0.01 30.00% 0.014 0.429 29.90% [0.014 0.423
2 10.028 84.00% 0.175 5.25 83.80% |0.186 5.571
3 10.027 60.80% 0.069 1.548 59.80% |0.068 1.507
4 10.024 90.00% 0.24 9 90% 0.244 9.200
5 [0.06 90.00% 0.6 9 91% 0.648 9.750
6 |0.03 61.90% 0.079 1.623 61.20% |0.080 1.651
7 10.03 73.10% 0.112 2.721 73.28% |0.113 2.773
Property Analytical | Simulated | Difference
Work in process |29.57 30.88 4.24%
Total cycle time |0.493 0.5152 4.30%

Cases A, B1 and B2 are comparable with each other. Figure 8 shows the comparison in cost of
case A with cases B1 and B2. The cost of model B2 gives a better solution than case B1, which
means it is worth considering the service time as a variable in order to improve the performance
of the system.

As we have already mentioned, case A gives a lower cost, however this does not imply that it is a
better solution, on the contrary, this is because additional elements are being incorporated into the
model, to with: constraint on the flow, constraints on each node; all the above results in the

feasible region shrinking.
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Operation Cost ($)

$3,800

$3,750

$3,700

$3,650

$3,600

$3,550 -

$3,500 -

$3,450 -

Case A Case B1 Case B2

Figure 8. Costs of cases A, B1 and B2
Case B3
This model incorporates the service costs and queuing cost at each station. The values, which are
given in table 11, are arbitrary as the only criterion for assigning them was for the queuing cost to
be more expensive than the service cost. The rest of the model does not have any alterations. The

comparisons shall only be made with model B4, which is described further on.

Table 11. Service cost data and queuing cost

Node 1 2 3 4 5 6 7
Service Cost $5 | $3 | $16 | $10 | $4.50| $8 | $8
Queueing cost | $6.50 | $15 | $17 | $15 | $12 | $13 | $11

Table 12. Flow through each arc
Arc 1-3 1- 4 2-3 | 2-4 | 3-5 | 3-6 | 3-7 | 4-5
Fraction | 0.750 | 0.250 |0.292| 0.708 | 0.25 0.5 0.25 | 0.25
Flow |22500| 7.500 |8.765|21.235| 7.82 | 1564 | 7.82 | 7.18

Arc 4-6 4-7 |5-8| 5-9 | 6-8 | 6-9 | 7-8 | 7-9
Fraction | 0.250 0.50 |0.250| 0.750 | 0.421 | 0.578 | 0.75 0.25
Flow 7184 | 1436 | 3.75 | 11.25 | 9.62 | 13.21 | 16.63 | 5.54

With the flows given in table 12, the properties of the system are shown below: used capacity,

cycle time and work in process (Table 13).
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Table 13. Properties in each node: analytical vs simulation

. C_ycle Work in . CycleTime .
Sta. Capacity | Time process Capacity (days) Wo_rk in process
(%0) (days) (units) (%) (units)
Analytical Simulated
1 30.0% 0.014 0.429 29.43 0.014 0.417
2 84.0% 0.175 5.250 84.52 0.187 5.63
3 84.5% 0.174 5.434 82.97 0.154 4.75
4 86.2% 0.217 6.225 85.64 0.208 5.98
5 90.0% 0.600 9.000 89.14 0.528 7.92
6 68.5% 0.095 2.171 67.32 0.091 2.04
7 66.5% 0.090 1.989 67.32 0.088 1.95
Property Analytical | Simulated | Difference
Work in process 30.496 28.712 6.21%
Total cycle time 0.508 0.48201 [5.3%

The first significant fact are the overall results obtained for cycle time and work in process, which
are lower than those for case B1. The work in process obtained of 30.496 units is 1.60 units
fewer, which represents a 5 % reduction. In the case of the cycle time, the result is 0.508 days and
represents a difference of 0.027 units; once again if we assume that 1 month =30 days, then the
new cycle time is 15.248 days and represents a 5% improvement in respect of case B1.

Here it is worth mentioning that a desirable goal for any administrator is to shorten the customer's
queuing time and decrease the inventory in process. In both cases the customer would perceive an
improvement in the service they receive: less of a wait to receive their product or else less of a
wait to be served.

We can also see that there is only one bottleneck in this example and this is at station 5, which is
at 90% of its capacity, having on average 9 units in a queue, which is followed, in terms of
holdups, by stations 2, 3 and 4.

The analytical results for the work in process now show a difference of 6.21% and in the case of
the cycle time, of 5.3% in respect of the results obtained by simulation.

As for the costs, having analyzed table 14 in detail, we observe that station 3 represents 26.7% of
the total costs and what stands out is that this has the highest service cost, in other words, service
is expensive at this station. Furthermore, when we look at the queuing cost column, we can see
that station 5 has the highest congestion cost, therefore, from a monetary perspective, queuing at
this station is the most expensive.

Nova Scientia ISSN 2007 - 0705, N° 18 Vol. 9 (1), 2017. pp: 257 — 289
- 280 -

Nova Scientia



Numerical analysis of minimum cost network flow with queuing stations: the M/M/1 case

Table 15 shows the costs of transport, the operating cost of the stations and the total cost of the
system. In this example in particular, the cost of the transport represents approximately 60% of

the total cost.
Table 14. Analysis of cost per station

Station| Service cost | WIP cost | $ Total / station %
1 $500.00 $2.79 $502.79 19.6%
2 $107.14 $78.75 $185.89 7.2%
3 $592.59 $92.37 $684.97 26.7%
4 $333.33 $93.37 $426.71 16.6%
5 $75.00 $108.00 $183.00 7.1%
6 $266.67 $28.22 $294.88 11.5%
7 $266.67 $21.87 $288.54 11.2%

Table 15. Overall costs

Operating cost of the stations | $2566.78 | 40.44%
Transport cost $3,781.69 | 59.56%
Total operating cost $6,348.47

Conventionally in a queuing network, an administrator focuses their attention on the bottleneck,
however and as we can see in the results described above, there are other considerations that
should not be ruled out.

In a situation like the one in the example being analyzed, the decision-maker has several possible
directions where they could propose improvements: they can take individual (service, congestion)
costs into account; consider the overall cost; focus on suggesting improvements either to temper
the effect of the production bottleneck or for the cost of transport which, in this case, represents

60% of the system’s total operating cost.

Case B 4.

In this variant we must now determine the service times for stations that minimize the cost of
flow in the network and take the values pij between pairs of nodes as fixed, so there is no change
in the flows. The values are taken from the model B3 solution and Table 16 shows the flows that
are obtained by analytical methods.
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Table 16. Flow through each arc

Arc 1-3 |1-4 2-3 [2-4 |3-5 3-6 |3-7 |4-5
Fraction |0.750 |0.250 0 1 0.25 |05 025 |05
Flow 22.500 | 7.500 0 30 5.63 11.25 ]5.63 18.75
Arc 4-6 |4-7 5-8 |5-9 |6-8 |6-9 |7-8 |7-9
Fraction [0.250 [0.25 0.250 |0.750 ]0.613 |0.387 |0.75 |0.25
Flow 9.38 9.38 6.09 [18.28 |12.66 |7.97 11.25 |3.75

The second column in table 17 shows the optimum service time. Looking at the results of case B4

we can see that the solution tends to balance the used capacity of each station: stations 2, 5, 6 and

7, at least, show very little difference between each other.

In this case the bottleneck is to be found at station 4 where the used capacity is 83.33%, followed

by stations 1 and 3.

Table 17. Optimum service time and properties at each node: analytical vs simulation

Opt'm“m . Cycle Work in . Cycle Work in
service Capacity : Capacity .
X time process time process
time (%) (days) (units) (%) (days) (units)
Sta. | (days)
Analytical Simulated
1 0.028 82.77% 0.160 4.804 82.22% 0.147 4.437
2 0.024 71.01% 0.082 2.449 70.74% 0.086 2.555
3 0.037 82.15% 0.205 4.601 81.97% 0.182 4.045
4 0.022 83.33% 0.133 5.000 83.42% 0.135 5.051
5 0.031 75.14% 0.124 3.023 74.07% 0.118 2.847
6 0.038 78.08% 0.173 3.562 79.23% 0.185 3.892
7 0.051 76.76% 0.220 3.303 76.85% 0.230 3.460
Property Analytical |Simulated | Difference
Work in process 26.74 26.38 1.36%
Total cycle time 0.445 0.439 1.36%

Station 3 contributes with 31.9% of the total costs of the system, followed by station 4 (Table
18).
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Table 18. Analysis of cost per station

Sta. |service-cost |Queuing cost |$ Total/ station %

1 $181.23 $31.22 $212.45 9.9%
2 $126.74 $36.74 $163.48 7.6%
3 $592.76 $92.20 $ 684.96 31.9%
4 $ 352.84 $ 65.62 $418.47 19.5%
5 $ 95.96 $ 28.46 $124.42 5.8%
6 $231.28 $48.71 $279.99 13.0%
7 $221.62 $44.18 $ 265.80 12.4%

It is worth pointing out that both the transport cost and the operating cost of the stations are

slightly lower than the ones obtained in case B4 (Table 19).

Table 19. Overall costs

Operating cost of .
the stations: $2,049.94 |36.24%

Transport cost $3,779.53 |63.76%
Total operating cost |$ 5,829.47

Cases B3 and B4 are compared in Figure 9. We can again see that it is a good idea to treat the
service time as a variable, as this makes it possible to get a better solution: The savings in costs
we obtain through finding the optimum service time and the optimum flow between stations is
6.58%, while the time cycle decreases by 10.83%. The comparison of B3 and B4 with cases A,
B1 and B2 is not considered valid because said models represent other systems as they do not

include either service costs or queuing costs.

Operation Cost ($)

$6,400
$6,300 +
$6,200 +

$6,100 +

$6,000 -

$5,900 +

$5,800 +

$5,700 +
$5,600 +
$5,500 -

Case B3 Case B4
Figure 9. Costs of cases B3 and B4
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Conclusions

The incorporation of new elements into a known model enriches the information that can be
extracted on obtaining its solution.

In the case of the networks flow, the conventional minimum cost flow model can be expanded by
assuming that each node is a station that provides a service j has a mean of Ts. In this case the
addition of elements from the queuing networks makes it possible to obtain additional
information about how the resources are being employed as well as, for example, getting metrics
such as the time cycle and quantity of work in process. Equations of queeing systems take into
account the stochastic component of a supply chain.

In this paper we tested a model for a single product and a single server, and can be applied to the
analysis of a supply chain, however it can be broadened to work with a variety of products, in
which case it falls within the multi-commodity flow problem with which a line of action is
decided.

Experiments showed that the optimal solution obtained with the minimum cost flow model
changes if the nodes are considered as queueing systems. Another fact observed is that, when the
nodes are queuing systems, the optimal solution obtained with the model tends to balance the
workload in the nodes and also tends to distribute the flows through the network.

The equations for the properties (WIP and cycle time) are analytic approximations. We observe
in the tests that were done that there is a difference between the analytical and simulated results,
with the biggest difference being observed in case B3 and the smallest difference being observed
in case B4. Even so, we can see that the analytical results have an acceptable level of accuracy.
Under the assumption of Poisson demand, service time exponentianlly distributed and stability of
the system, managers and practitionares can expect that the proposed analytical model can be
considered as a reliable tool for the analysis of a supply chain.

The conventional minimum cost flow model can be expanded to incorporate elements from
queuing networks such as variability of demand, variability of service time, and variability due to

failures or set-ups.
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Appendix 1

The following appendix describes in a general way the sections corresponding to the formulas of
queueing theory coded in the template. It follows the sequence proposed in Curry and Feldman
(2009). The template calculates properties of systems with up to 10 stations of G/G/1 queueing
systems.

MinCostFlowQueueingMets - Microsoft Excel use no comercia

it Disefio de pag ista
Calibri 18 5S¢ Ajustar texto General |
N £ § & Combinary centrar - | &3 - o g
Fusnte Alineacion Nimero
h I’
w 0 0 o G v G W i 7 " C m W 0 3
' ! Probability Performance measures
. Coef.
1 2 3 4 5 6 7 8 9 10 Est. Service time |std. Dev_|var. Utilization (%)| _Stable
1 0 o 75 o025 0 0 0 0 0 o 1 1 30.0% Si
2 0 o[ 0.29267 07073 0 0 0 0 0 g 1 2 84.0% si
3 0] 0 a 0| 0.250000145 0.5 0.25] 0 0 0] 1 3 84.5% i
4 0 0 [ 0 025 0.25] 05| 0 0 of 1.000000145 a 86.2%
5 0 0 0 0 0 0 0 035 075 ] 1 5 30.0%
6 0 0 0 0 0 0 o[ 0.596023] 0403977 9 1 6 68.5%
7 0 0 0 [) 0 0 0[ 0.570277] 0.4257226] o 1 7 66.5%
8 0 0 0 0 0 0 0 0 0 ] ) 0.0%
9 0 0 0 0 0 0 0 0 0 9 9 0.0%
10 0 0 0 0 0 0 0 0 0 o 10 0.0%
External inflow / station Total inflow / station Costs
Sa. 1 .
Coef. Sevice |y oy | Total service | Total WIP | S Total /
Est.  |mow |pev var. |Totlfiow | c2s Est. cost cost cost station %
1 30 30} 1 1 5.00 6.50 500.00 279 50279 15.6%
2 30 1 2 3.00 1500 107.14 78.75 185.89 7.2%)
3 0 0 3[S 1600 17.00 592.59 9237 68496 26 7%
4 0 [] als 1000 15.00 333.33 93.38 22671 16.6%
5 [ [ 5 250 12.00 75.00 108.00 183.00 7.1%)
6| 0 0 [ 8.00 13.00 266.67 2822 294.88 11.5%
7 0 [ 7 8.00 11.00 266,67 2187 28854 11.25%
8 0 [ E - 0.0%)
9 0 0 9 - 0.0%|
10] 0 0 10} - 0.0%| L
Total 60) $ 2,141.4 $ 425.38 Tot:
Total queue cost $ 2,566.78 Total Cost $ 5,348.47|
o >
W« » 1| QueueingNetworks . ¥J 14 0|

Listo | |[EOm e U @

~ = i) ESP

17/02/2017

Figure Al. Partial view of the spreadsheet template: Paths, properties of the network, external
flows and costs of the queues

The template is divided into the follows sections: Process path (probability matrix), External
flows, Properties of the network (figure Al); also with the costs of the stations, Table of origin-
destination costs, flow between nodes, cost of the flow between nodes, Operating cost of the
stations, transport cost and total cost of the system (figure A2).

The shaded cells are the data that should be entered, for example: External flows (C16:C25) and
their standard deviation of the arrivals (D16:D25), service times (03:012) with their standard
deviation (P3:P12). Other data are service costs (016:025), queuing costs (P16:P25) and the
costs of transfer between nodes(X3:AG12).
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o + MinCostFlowQueueingNets - Microsoft Excel uso no comercial _ w
@ Inicie | Insertar  DiseRo depagina  Férmulas  Datos  Revisar  Vista o @o @ B
== % Cort . = | ) ) Tm Tk EFH T Autosuma - A %
Calibri 18 v N = Ajustar texto General - 2 - o
23 Copl E| s = = =N @] Rettenar - '5? }3
Pegar N K& S - EE Combinary centrar = | @8+ %, gpg | %0 9  Formato  Darformato Estilos de | Insertar Eliminar Formata ord ¥
H opiar farmato == e Y = ® *% | condicional - como tabla~ celda * - ccionar
Portapapeles Fuente [ eldas
AK25 - o v
i 0 f - A A a =
Trasnportation cost between station Flow between nodes =
1 2 3 1 5 6 7 8 9 10 1 2 3 a 5 6 7 8 9 10
1 S 250|5 500 - - 2250 7.50
2 S 330|5 250 - - 878 2122 - -
3 $ 205 170[5 210 - - - B 782 | 1564| 782
] $ 200[5 200[5 190 - - - B 718| 718| 1438 - -
5 s 200[s 120 - - - - - 375 1135
3 s 120]s 130 - - - - - 1360 | 922
7 s 120]s 110 - - - - - 1265 | 953
0 5 5
9
10
Transportation cost
1 2 3 4 5 6 7 8 9 10
s s 3 562.5|5 37508 s s s s s -
s s s 28975 e152] 6 s - s - [s B s
5 s s - s - 1720 [ 2653 | 5 1642
5 s s - s - 1436 | 5 1236 | 5 2728 - -
- - - 7505 1350
1904 [ 5 1198
1518 | 5 1048
5 - 5 - S - s - 5 - 5 - 5 - 5 - 5 - s -
S - S - S - S _- 5 - s - 5 - S - S - S - I .I
Total transportation costs| § 3,781.69
-
W 4+ M| QueueingNetworks ¥ [« (30|
Lista | |2l M sese (=)} (+)

Figure A2. Partial view of the spreadsheet template: Costs of transport and flows

Flow in the network

First it is necessary evaluate the arrival flow to each station with eq. (6). Once the user has
entered all data, the spreadsheet evaluates the transpose with the following function:
=TRANSPOSE (C3:L12)

After, the spreadsheet calculates the difference P'- I and then gets its inverse:
=MINVERSE(C63:L72)

The arrivals to each station are obtained by multiplying the vector of input flows by the inverse:
=MMULT(C75:L84;C16:C25)

Variability of the arrivals

To solve eq. (8) the procedure is as follows:

Each element of Q is calculated with eq. (9). For example:

=IF ($G$16>0;G16*C3*C3*(AC34)/$G$16; )

The template transposes Q:

=TRANSPOSE(P34:Y43)

Evaluates (1-Q) and then obtains the inverse:

=MINVERSE(P84:Y93)

Each element of f vector is obtained in the range (P47:P53), (R47:AA56) and (AD47:AD53)
using eq. (10). In the spreadsheet the formulas are:

Nova Scientia ISSN 2007 - 0705, N° 18 Vol. 9 (1), 2017. pp: 257 — 289
- 288 -

Nova Scientia



Numerical analysis of minimum cost network flow with queuing stations: the M/M/1 case

IF(G16>0;(C16/G16)*F16;) + IF(G16>0;($G$16*C33/G16)*(C33*$AB$34*$Q$3+1-C33);) +
...+ IFI(G16>0;($G$25*L33/G16)*(L33*$AB$43*$Q$12+1-L33); )

Function IF is used to avoid division by zero.

In the final step C?; is obtained with Eq. (8), in the spreadsheet the formula is:
=MMULT(P95:Y104;AE47:AE56)

Cycle time and Work in Process
The template updates automatically the cells. The cycle time (T3:T12) and work-in-process

(U3:U12) are obtained applying equations (11), (12) and (22).
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