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Resumen 

En una red los nodos representan estaciones, almacenes, centros de distribución y clientes y 

circulan tanto materiales como información, por lo que una herramienta utilizada para apoyar la 

toma de decisiones es el modelo de flujo a costo mínimo que toma en cuenta únicamente costos 

de transporte. En la realidad los nodos prestan un servicio el cual requiere un tiempo de servicio, 

la atención sigue una disciplina y además se forma una fila de espera. En este trabajo se propone 

una modificación del modelo de flujo a costo mínimo para la optimización en redes de líneas de 

espera. Se resolvieron varios casos donde se observa un grado de exactitud aceptable en el 

cálculo del tiempo de ciclo y trabajo en proceso. El trabajo es de interés para los administradores 

y/o responsables de las cadenas de abasto y útil para la toma de decisiones a mediano y largo 

plazo. 

 

Palabras clave: flujo en redes; cadena de abasto; redes de colas; tiempo de ciclo; trabajo en 

proceso 

 

 

Recepción: 19-01-17                                                                                     Aceptación: 05-03-17 

 

Abstract 
In a network the nodes represent stations, warehouses, distribution centers and customers and not 

just materials but also information circulate, so the minimum cost flow model, that only takes 

transport costs into account is one of the tools used to support the decision-making. In reality, the 

nodes provide a service which requires a service time, the servicing follows a discipline and also 

a queue is formed, generating the respective service and queuing costs. A modified version of the 

minimum cost flow model is proposed in this paper for the optimization of the flow in a queuing 

network. A variety of cases were solved. An acceptable level of accuracy was observed in the 

calculation of the time cycle and work in progress. The results indicate that the optimum solution 

tends to balance the workload along the network. This paper is of interest to administrators and 

people in charge of supply chains and is useful for decision-making in the medium or long time. 

 

Keywords: network flow, supply chain, queueing networks, cycle time, work in process 
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Introduction 

In industry and services, supply systems have a high degree of complexity, owing to the existence 

of the multiple relations that each element has with others within the same system. In 

consequence, it is often observed that work should be done with a network of stations/plants, 

warehouses/suppliers, containers/distribution centers and customers. Throughout such a network 

not only materials but also information circulates (Bhaskar and Lallement, 2010). 

Some examples of the decisions that the administrators of these systems have to take are: how 

much product should be manufactured or how much should be sent from each workplace to the 

following link in the chain, with the total cost of dispatch being the common performance 

measurement (Figure 1). Consider also a cross-docking system where goods and materials are 

transferred without actually entering the warehouse or being put away into storage (Kulwiec, 

2004); a manager must determine the service time or the number of servers that reduces the 

residence time within the facilities, in other words the cycle time in the system. 

 

Plant 1

Plant 2

Plant 3

Supplier 1

Supplier 2

Supplier 3

Distributor 1

Distributor 2

Distributor 3

Customer 

1

Customer 

2

Customer 

3

Suppliers Manufacturing Distribution Customers

 

Figure 1. Network of factories, warehouses and customers 

Optimal network design plays an important role in the supply chain operation, as good logistic 

distribution network can save transportation costs as well as improve service levels (Marmolejo, 

Rodríguez, Cruz-Mejía & Saucedo, 2016). The minimum cost network flow model is a useful 

tool for analyzing these types of systems.  
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It is worth mentioning that the nodes in a network, such as the one mentioned above are usually 

stations that provide a service, in other words, we are talking about queuing networks. Analytical 

queuing models are used for determining properties such as work in progress, time in the system 

(cycle time), congestion of the system, measuring the quality of the service as well as quantifying 

the operating cost of said systems. 

Networks may be open (the customers can enter and leave through any station on the network) or 

closed (the customer circulates around the network). Queuing network models are employed to 

represent not only production or manufacturing lines or, but also service and supply chain 

systems (Bolch, Greiner, de Meer and Trivedi, 2006). 

 

Problem 

The minimum cost network flow model only takes the transport costs into account; however 

every node on the network is often a station that provides a service (a factory, a warehouse). This 

operation generates a service cost (the products have to be manufactured) and a cost for the time 

taken to be served (the orders follow a service discipline and a queue is formed). In this context, 

managers and practitioners also need information about cycle time, work-in-process as well as 

the availability of resources at plants and warehouses. For a given topology of plants, warehouses 

and demand centers, it is evident that the solution obtained by a minimum cost flow model will 

change if each node is considered as a queueing system but, how much is the difference?; how 

sensitive is the solution if practitioners include transportation cost, waiting cost and service cost; 

what a practitioner and a manager can expect if they wish to measure supply chain performance 

as queueing networks.  

 

Background 

Most papers on queuing networks focus on the determination of the properties of the networks 

and use both analytical means and simulation. These models can be used for finding properties, 

control, planning and optimization, which is the case with this paper.  

In the paper of Pourbabai, Blanc and van der Duyn Schouten (1996) a modified version is 

presented of the minimum cost flow model together with the respective version of the maximum 

network flow problem with stations where queues form. Their paper proposes the probability of 

meeting service levels as a constraint.  
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Kerbache and MacGregor Smith (2000) propose a mathematical programming model that 

determines the optimum path that maximizes the throughput, the properties are calculated by 

applying the Generalized Expansion Method. Given that this is a mixed integer nonlinear model, 

an algorithm is developed to find good solutions, Yenisey (2006) applies concepts from 

Pourbabai et al (1996) to construct a mathematical programming model for MRP systems. 

MacGregor Smith (2011) considers M/G/c, M/G/c/c systems and proposes a procedure for 

finding the optimum flow paths in a queuing network: In this case, the objective function is the 

system’s throughput and is applied to the modeling of passenger flow in underground transport 

systems. 

Morabito, de Souza and Vázquez (2014) propose an analytical method for the shortest path 

problem in G/G/c queuing networks as well as the application of equations to improve the 

accuracy of the calculations of the system’s properties, while, when applicable, the objective 

function also maximizes the throughput of the system. van Woensel T., Cruz F.R.B. (2014) 

extended the model to G/G/c/K networks to determine the shortest route in systems with multiple 

servers. 

Some examples of applied cases we can mention are Bhaskar and Lallement’s paper (2010) for 

the analysis of the supply chain of an Indian textile company, Srivathsan and Kamath (2012); 

they propose a model for the analysis of supply chains, but raise the idea of using the model to 

plan and find the optimum values of decision variables. He and Hu (2014) propose a model for 

decision-making in disaster prevention systems for the Shanghai area, while Beard and 

Chamberlain (2013) employ the principles proposed in Pourbabai. et al (1996) for the analysis of 

the flow of information in computer network systems. 

Other analytical techniques for the modelling of supply chains are Petri Nets, Series parallel 

graphs, Markov chains and system dynamics (Srinivasa &Viswanadham, 2001).  

This paper’s contributions are: 

1. This paper is a variant on the proposal of Pourbabai, et al (1996), but in this case the queuing 

and node operating costs are included in the objective function.  

2. It differs from Morabito, Souza and Vázquez’s paper (2014) in that different versions of the 

cost model are employed and assessed; the analysis is, for the moment, confined to the fact that 

the service time and demand follow an exponential distribution.  
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3. We apply the decomposition principle to obtain the performance measures. MacGregor Smith 

(2011), Morabito, et al.(2014), or van Woensel T., Cruz F.R.B. (2014) use General Expansion 

Method. 

4. We are contributing with an approach for the process of modeling and analysis of a supply 

chain as a network of queues. 

5. We obtain an optimal solution and calculate the work in process and cycle time of proeuction 

orders. 

6. Numerical examples are solved and the results are compared with those obtained from a 

conventional minimum cost flow model. Simulation is used to validate analytical results of cycle 

time and work-in-process. 

This paper is of interest to administrators and/or people in charge of supply chains, purchasing 

schedulers or production schedulers and is useful for decision-making in the medium or long 

time. With this model we get information about the cycle time, the work in process and the 

congestion at each station as well as the quantity of a product that must be sent to each customer 

in the network, minimizing the total operating cost of the system, this approach takes ino account 

the uncertainty of demand and service time of plants and distributors. 

 

The minimum cost network flow problem 

Consider a directed network that consists of a finite set of nodes N and a set of directed arcs A 

that join pairs of N nodes. Arc (i, j) is said to be incident to nodes i and j and is directed from 

node i to node j. Every node i is assigned a number fi that represents the available supply of an 

article (f > 0) or the demand for some article (f < 0). Nodes with supply are known as source 

nodes and the demand nodes are known as destination nodes. If fi= 0 then it is a transfer node, 

given that there is no supply or demand at said node. 

Each arc is associated with a value xij that is the flow of material from node i to node j and a 

constant cij that is the cost of circulating through said arc. We shall that the total supply and the 

total demand are equal, in other words 0 if . The minimum cost network flow problem can 

be posed as follows: Shipping the available supply through the network in order to satisfy the 

demand at a minimum cost. Mathematically, this problem is expressed as follows: 

Minimize: 
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ij fxx 
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, ni ,...,2,1      (2) 

0ijx          (3) 

 

The constraints (2) are called network flow conservation equations. In conservation equations, 

the term  

m

i ijx
1

represents the total flow that leaves node i towards any node j, while the term 

 

m

k kix
1

is the flow that enters node i from any other node k. 

The equations require the net flow that leaves node i to be equal to fi. Finally, it must be pointed 

out that there can be flow capacity through the arcs. 

The minimum cost flow model can be used to represent a logistics network where people and/or 

materials move through various points, the movement of locomotives, communications systems, 

oil pipelines, tanker schedules, etc (Bazaraa, Jarvis and Sherali, 1974, Wagner, 1975). 

The minimum cost network flow problem can be posed as a linear programming problem and the 

simplex method can be applied to find the optimum solution for a particular instance. 

One of the assumptions in the aforementioned flow model is that no operation is done in the 

nodes and that the material flows without undergoing any kind of delay. However the people in 

charge of the administration and planning of the operations must take into account the time 

customers and materials spend in a queue at the station while waiting for the corresponding 

service; the time required to process a product, order or job; and the cost of the service, while 

they must also determine and analyze the system’s properties such as the amount of work in 

process (WIP) and the cycle time in the system (from the time when the order is received until it 

is delivered to the end customer). 

 

The aforementioned properties are performance measurements for queuing networks. A summary 

of the method for calculating said properties is given below.  
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Queuing networks 

A queuing network is one where there are at least two stations connected to each other (Figure 2).  

Each node on the network represents a resource (for example a station or a factory). In this paper 

we use the following premises: 

1. The stations have infinite capacity in the line. 

2. Customers arrive at the network at the rate of λ customers per unit of time and travel from one 

station to another within the network. 

3. Each station has si servers with a capacity of µi customers per unit of time. 

1

3

2

CT3

WIP3

CT2

WIP2

CT1

WIP1

λ1

λ2

λ3

 
 

Figure 2. Queuing network 

 

Properties of queuing networks. 

Assume a network of n stations, the transit of the customers from one station to another is defined 

by the transit matrix P where each element pij is the probability that the customer goes from 

station i to station j. P is a square matrix. Assume that, through node i, γ0i customers per unit of 

time can enter the network from the exterior. Therefore the total flow to any node i on the 

network satisfies the following expression (Buzacott and Shanthikumar, 1993, Curry and 

Feldman, 2011, Bolch et al, 2006): 





m

j

ji

T

ijii p
1

0  mi ,,2,1       (4) 

Expressing this result in a matrix form: 

λPγλ
T

        (5) 
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Where γ and λ are the flow column vectors from the exterior to each node and the entry flow to 

the node, respectively and PT is the transpose of the probability matrix. The system can be solved 

to obtain the entry flows to each station λ: 

  γPIλ
1

 T
       (6) 

Where I is the identity matrix. As can be observed, given γ and P, the equation calculates the 

entry flows to each station on the network. 

 

Quadratic coefficients of the entry flows 

After the equation (4), the entry flow to each station is made up by two elements: the entry from 

outside to the system through node i and the flow from any station within the network. 

Assume that the external flow to a node j has a coefficient of variation that is denoted as  jCa ,02 , 

likewise, the coefficient of variation for the flow from a node k to node j is denoted as  jkCa ,2 .  

If the station has s servers, and each customer requires 
1  units of time to be served, with a 

coefficient of variation  jC
ST

2
, also if each station that makes up the network is stable, in other 

words it holds that 1, 
j

jjS

s

T 
 (the used capacity or congestion of the work station) therefore 

the quadratic coefficients of variation in the entry flows to each station are obtained with the 

following approximation: 

   
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a
p

s
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1

2

2
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202

1
1

    

1

,0










  (7) 

Once again this approximation can be expressed in matrix form and is solved as a system of 

linear equations, whose solution shall be: 

  βQIC
2

a

1
        (8) 

Where each element of the matrix Q is calculated as follows: 

 

 
j

kkjk

kj

p
q



 22 1
          (9) 

And each element of the vector β is obtained with: 

 



 Hernández-González, S. et al. 

 

Nova Scientia ISSN 2007 - 0705, Nº 18 Vol. 9 (1), 2017. pp: 257 – 289 
- 266 - 

   
 


 



























 


m

k

kj

k

kT

kkj

j

kjK

a

j

j

ai p
s

skC
p

p
jCjC S

1

2

2202 1
1

,0 







  (10) 

Once the flows and their respective coefficient of variation have been obtained, the next step will 

consist of assessing the properties of each one of the network’s station applying the 

decomposition principle. The expressions for the cycle time of station i and variability of 

departure from station i are: 

   iSiS

i

iiSid

i TT
CC

CT ,,

2

,

2

1,

12
























 







   (11) 

  2

,

22

1,

2

, 1 iSiidiid CCC   
      (12) 

 

A summary of the procedure is given in figure 3 (Buzacott and Shanthikumar, 1993, Curry and 

Feldman, 2011). 

 

1. Read the vector of service times tS, the vector of coefficient of variation 

Cts
2, the vector of entry flows to each station γ and the vector of 

coefficients of variation Ca
2 at the entry. 

2. Read probability matrix P 

3. Calculate the vector of entry flows λ at each station  

4. Assess ρ for each station, if ρ > 1 for any station, stop, the network is 

unstable. Otherwise go to step 5. 

5. Calculate the vector of quadratic coefficients of variation Ca
2 at the 

entry. 

6. Calculate the properties of each station: Work in process, cycle time. 

Figure 3. Procedure for calculating the properties of a queuing network 

 
 

Cost function in a queuing network 

The operating cost of a queuing network is expressed by the following equation: 

FlowCostWIPCostServerCostOCOpCost    (13) 
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Conventionally, only the service cost and queuing cost are included in the operating cost (OC) in 

a queuing network. Likewise, only the network flow cost is included in a minimum cost flow 

problem. 

Equation (13) includes the three terms: the cost arising from the operation of the servers 

( 








iS

i
iS T

s
C

,
,  ), the cost of having inventory in process in the station ( iiWIP WIPC ,

 ) and 

finally the cost of transiting from station i to station j ( ijij xc ,
). 

As can be appreciated, flow xij between pairs of nodes is calculated using (4).  Assuming that the 

external flows only appear at the supply nodes, then the term γ0i is zero, and the flow for any 

node other than the supply nodes is: 

T

ijjij px 
 

      (15) 

 

Optimization model  

Assume that we have a network with a set of nodes Nn and set of arcs Aa . There is a set of 

nodes that represent the customers and generate a demand of 
i units per unit of time; said 

demand follows a probability distribution G.  

The material receives a transformation at each node that, on average, requires 
iST ,
units of time 

and follows a probability distribution G. Therefore this is a network with G/G/s type stations. If 

12 
STC  and 12 aC , then the station is Markovian or M/M/s, in accordance with the notation of 

Kendall. 

There is no external flow to the demand nodes. Moreover, reflows are only considered for 

representing reprocesses, whereas exits from the system through any node other than the demand 

nodes are not considered. 

The flow between the network’s stations can be represented as a probability matrix P. 

There is a service cost, Service Costi, for serving or producing a product unit, and there is also a 

cost per unit of work in process, Work in process Costi. Finally there is also a cost for transiting 

from one station to another cij. The proposed optimization model is as follows: 

Minimize: 


 

















m

i

m

j

ijij

m

i

iiWIP

m

i iS

i
iS xcWIPC

T

s
COC

1 11

,

1 ,

,     (16) 



 Hernández-González, S. et al. 

 

Nova Scientia ISSN 2007 - 0705, Nº 18 Vol. 9 (1), 2017. pp: 257 – 289 
- 268 - 

Subject to: 
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m

k

k

T

kiiij px
1
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The quantity of material that should circulate between pairs of nodes or stations should be 

determined in such a way as to minimize the value of operation cost (16). It is worth mentioning 

that in the model, the decision variable is the probability or fraction 
ijp of material that travels 

through the arc, with which the flow through the arc is calculated afterwards. 

The flow is constrained to the entry – throughput balance at each node (17) being satisfied, as 

well as to the flow in the system being such that the congestion or used capacity at each station ρ 

(used capacity or congestion) are fulfilled or, if not, to ρ < 1 for all the stations (18).  

Likewise, the way in which the flow is directed through the network is constrained to the range 

given in (19). In the model, the constraint (20) ensures that the material does not leave the 

network through any node that is not a demand node. In any event this constraint can be modified 

if necessary. The flows are calculated using (21). 

The problem of routing customers, packets and other entity flows in finite queueing networks is 

an integer nonlinear programming. Our model is a variant of the Optimal Routing Problem in 

queueing networks which is known to be NP-hard (MacGregor Smith and Daskalaki, 1988, 

Kerbache and MacGregor Smith, 2000). The proposed model can incorporate constraints for the 

work in process or the cycle time. It is also feasible that the service time of one or more stations 

and the number of servers are also decision variables.  

It is worth mentioning that, like any model, it is necessary to be careful to take the necessary 

factors into account and thus avoid situations such as getting a very complex model that does not 

have a feasible solution.  
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This model can be applied to the analysis and solution of problems involved with the planning of 

supply chain operations, using a networks approach and properties, such as the cycle time, work 

in process, the load at the stations or production or processing centers. 

 

Implementation on a spreadsheet 

It was necessary, for the study, to construct a spreadsheet template using the steps of the  

aforementioned figure 3.  

The template automatically calculates the total entry flows of each node using the equations (4) – 

(6); the flows through each arc with their respective cost; the costs of the stations; cycle time and 

amount variability of departures of each station; as well as the total operating cost of the system 

using the equations (7) – (12).  

Work in process of each station is obtained with Little’s Law: 

 

CTWIP          (22) 

 

The template allows us to model systems that have up to 10 stations with a network arrangement 

or else with a pure series arrangement. Further details will be encountered in Appendix 1. 

 

Numerical examples  

A numerical analysis was carried out of several cases with a proposed minimum cost flow model, 

estimating properties (Work in process and cycle time), while the results were validated using 

simulation.  

All cases were built taking into account that the maximum number of stages that are considered 

in mathematical models of supply chains are four (Olhager, Pashaei and Sternberg, 2015).  Case 

A is a conventional minimum cost flow model without operation at the nodes. In series B, the 

minimum cost flow model with operation at the nodes was studied with and without costs (Table 

1).  

In case B1, decision variables are the probabilities pij of the customer going from node i to node j. 

In case B2, the decision variables are pij as well as the service time at each station or node. In 

case B3, which is the model with service cost and queuing cost, the decision variable is the 

fraction pij that travels between pairs of nodes. 
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Table 1. Cases studied 

Case 

Operation 

at the 

nodes 

Cost 

flow 

Cost of  

service 

and 

queuing 

Decision variable 

A No Yes No Flow at each arc xij 

B1 Yes Yes No 

Fraction pij that is sent from node i 

to node j.  The flow is calculated 

using (13). 

B2 Yes Yes No 

Fraction pij that is sent from node i 

to node j and service time at each 

node. The flow is calculated using 

(13). 

B3 Yes Yes Yes 

Fraction pij that is sent from node i 

to node j.  The flow is calculated 

using (13). 

B4 Yes Yes Yes 

Fraction pij that is sent from node i 

to node j and service time at each 

node. The flow is calculated using 

(13). 

 

 

Finally, in model B4, the decision variables are the fraction pij that travels between pairs of nodes 

and the service time at each station or node.  

To validate each analytical result from series B (flows, WIP and cycle time), we used a 

simulation model that was constructed in the Arena simulation software. Five independent 

replications were done. The run length was chosen to obtain a 95% confidence interval of WIP 

and cycle time. The details of the model and the data for the repeated samples are given in table 

2. An example is given of the model in figure 4 as an illustration. 
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Figure4. Example of the simulation model for validating the results of series B 

 

Table 2. Characteristics of the simulation model 

Simulation time (95% confidence) 5000 days 

Replications 5 per series B case  

Calculated properties  Work in process and cycle time 

Probability function for service 

time  

Exponential 

Probability function for demand Exponential 

 

Series A 

Consider a system such as that of figure 5. Nodes 1 and 2 are the sources of the supply, nodes 3 

and 4 are manufacturing nodes, 5, 6 and 7 are transfer nodes and nodes 8 and 9 are the demand 

nodes. 
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Figure 5. Directed network for case A 

 

The costs per unit transported between pairs of nodes are given in table 3. The demand at nodes 8 

and 9 is 30 units, while the supply available at nodes 1 and 2 is 30 units. 

 

Table 3. Origin – destination costs 

 1 2 3 4 5 6 7 8 9 

1   $ 25.0  $50.0       

2   $33.0  $29.0       

3     $22.0  $17.0  $21.0    

4     $20.0  $20.0  $19.0    

5        $20.0  $12.0  

6        $14.0  $13.0  

7        $12.0  $11.0  

 

 

On solving the minimum cost flow model, using Solver and the data, we get the solution given in 

figure 6: 30 units should be sent from node 1 to node 3, and 30 units from node 2 to node 4.  30 

units shall be sent from node 3 to node 5, 30 units shall be sent from node 4 to node 7. 



Numerical analysis of minimum cost network flow with queuing stations: the M/M/1 case 

 

Nova Scientia ISNN 2007 - 0705, Nº 18 Vol. 9 (1), 2017. pp: 257 – 289 
- 273 - 

1

2

3

4

5

6

8

9

7

Suppliers Manufacturing Distributors Customers

 
 

Figure 6. Solution to case A 

 

Finally node 5 shall send 30 units to demand node 9 and node 7 shall supply 30 units to demand 

node 8 (Table 4). The operating cost is $3570. 

 

Table 4. Flow per arc 

Arc 1 - 3 1- 4 2- 3  2 - 4 3- 5 3 - 6 3 - 7 4 - 5 

Flow 30 0 0 30 30 0 0 30 

 

Arc 4 - 6 4 - 7 5 - 8 5 - 9 6 - 8 6 - 9 7 - 8 7 - 9 

Flow 0 0 0 30 0 0 30 0 

 

 

Series B. Minimum cost flow model with operation at the nodes  

The analysis of the system is presented below, incorporating the data about the operation at each 

node, as well as the constraints on flow and use of the capacity. 

 

Case B1 

Consider the above minimum cost flow problem, taking into account that the nodes are stations 

where the customers receive a service, the data corresponding to the service time at each station 

are given in table 5. 
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Table 5. Service time and standard deviation of the service time at each node 

 Node 1 2 3 4 5 6 7 

TS 0.01 0.028 0.027 0.03 0.06 0.03 0.03 

σTs 0.01 0.028 0.027 0.03 0.06 0.03 0.03 

 

 

We will assume, in this case, that the service times are exponentially distributed, there are only 

transport costs between stations and that there is only one server at each node.  

The decision variable is fraction pij which must be sent from station i to station j, this value is 

used to calculate amount of the flow of material between each station (Table 6).  

 

Table 6. Constraints of case B1 

90.025.0  i , 7,6,5,4,3,2,1i  Used capacity constraint 

125.0 13  p , 125.0 14  p  

125.0 23  p , 125.0 24  p  

125.0 35  p , 125.0 36  p , 125.0 37  p  

125.0 45  p , 125.0 46  p , 125.0 47  p  

125.0 58  p , 125.0 59  p , 

125.0 68  p , 125.0 69  p , 

125.0 78  p , 125.0 79  p , 

Constraints for the 

proportion that has to 

move through arc ij 

  30787686585  ppp   

 
  30797696595  ppp   

Node 8 demand 

constraint 

Node 9 demand 

constraint 

30

30

242232

141131





pp

pp





 
 
 

  0

0

242141474464454

232131373363353





ppppp

ppppp




 

Constraint for supply 

nodes 1 and 2 

 

Node 3 flow constraint. 

Node 4 flow constraint. 

 

The constraints for the value of pij are given in table 6. For this example in particular, the used 

capacity is constrained to the (25% – 90%) range. 

 

In this case we assume that the total demand of nodes 8 and 9 is shared out equally between 

nodes 1 and 2 (this could be the result of a decision taken beforehand by the person in charge in 
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accordance with some prior criterion) in consequence, the entry flow to said stations is 30 each. 

The same table 6 shows the flow constraints for the supply nodes 1 and 2, as well as the demand 

nodes 8 and 9. Of transfer nodes 3 – 7, only the equations corresponding to nodes 3 and 4 are 

shown. 

 

The flows between stations were obtained by running the Solver complement and are given in 

table 7. 

Table 7. Flow per arc 

Arc 1 – 3 1- 4 2- 3  2 - 4 3- 5 3 - 6 3 - 7 4 - 5 

Fraction 0.750 0.250 0.25 0.75 0.25 0.50 0.25 0.25 

Flow 22.500 7.500 7.50 22.50 7.5 15 7.50 7.50 

 

Arc 4 – 6 4 – 7 5 – 8 5 - 9 6 - 8 6 - 9 7 - 8 7 - 9 

Fraction 0.25 0.50 0.250 0.750 0.41 0.59 0.75 0.25 

Flow 7.50 15 3.75 11.25 9.37 13.13 16.88 5.63 

Operating cost $3,776.25 

 

 

The first significant point is the fact that the flow between stations is not an integer value, unlike 

a conventional minimum cost flow model. In the new solution, unlike Case A, the flow is 

distributed throughout the network (Figure 7). 
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Figure 7. Solution to case B1 
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The flow between stations requires the sending of material from station 1 to 4 and from station 2 

to 3. The same happens with the flow from 3 to 5, 3 to 6, 3 to 7, 4 to 6, 4 to 7, 5 to 8, 6 to 8 and 7 

to 9. 

The operating cost obtained, being $3,776.25, is higher, which represents a difference of $206.25 

or 2.8% in respect of case A. It is worth mentioning that this is normal as, owing to the conditions 

imposed on each node and the flow between stations, arcs were employed that had not been 

considered, thus raising said cost.  

Additional information is obtained with model B1 for the administrators and decision-makers: 

We observe, for example, that station 1 is only used at 30% of its used capacity ( or congestion); 

stations 2 and 3 are used at 84 and 81% of their capacity, respectively; while stations 6 and 7 are 

used at 67.5% of their capacity (Table 8). 

 

Table 8. Properties in each node: analytical vs simulation 

Sta. Capacity  

(%) 

Cycle 

time 

(days) 

Work in 

process  

(units) 

Capacity 

(%) 

 

Cycle time 

(days) 

Work in 

process 

(units) 

 Analytical Simulated 

1 30.0% 0.014 0.429 30.79% 0.014 0.4375 

2 84.0% 0.175 5.250 86.18% 0.239 7.34 

3 81.0% 0.142 4.263 81.32% 0.143 4.33 

4 90.0% 0.300 9.000 90.81% 0.277 8.44 

5 90.0% 0.600 9.000 90.15% 0.539 8.33 

6 67.5% 0.092 2.077 66.70% 0.091 2.055 

7 67.5% 0.092 2.077 65.89% 0.085 1.935 

Property Analytical Simulated Difference 

Work in process 32.10 32.91 2.46% 

Total Cycle time  0.535 0.5428 1.4% 

 

One relevant factor is the identification of the bottleneck. One accepted definition establishes that 

the bottleneck is the station where the most work in process is to be observed (Lawrence and 

Buss, 1995). In this example, stations 4 and 5 can both be considered to set the limits for the 

production capacity, as they are used at 90% of their capacity. 
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The cycle time for the process is the total time that elapses from the moment when the production 

order is received until it arrives at its destination with the customer: In the example, the total 

cycle time is 0.535 days and if we assume a basis of 1 month= 30 days, then the cycle time will 

be 16.05 days. 

The amount of work (customers or production orders queuing in front of the station waiting for 

service) in the overall process is 32.096. 

As regards the properties obtained by simulation, the work in process obtained by the analytical 

method differs by -2.46% in respect of results of the simulation, while the cycle time differs by-

1.43%. 

 

Case B2 

The flows and cost that were found by analytical methods are given in table 9.In this case we 

observe that on being compared with case B1, the solution obtained presents several changes in 

both the flows and the properties of the system.  

 

Table 9. Flow at each node 

Arc 1 - 3 1- 4 2- 3 2 – 4 3- 5 3 - 6 3 - 7 4 - 5 

Fraction 0.750 0.250 0 1 0.25 0.50 0.25 0.25 

Flow 22.500 7.500 0 30 5.63 11.25 5.63 9.38 

 

Arc 4 - 6 4 - 7 5 - 8 5 – 9 6 - 8 6 - 9 7 - 8 7 - 9 

Fraction 0.25 0.50 0.250 0.750 0.386 0.617 0.75 0.25 

Flow 9.38 18.75 3.75 11.25 7.97 12.66 18.28 6.09 

Operating cost $3744.78 

 

In the flows we observe, for example, that the arc 2 – 3 is not used. The total operating cost, 

which in this case is only the flow between pairs of nodes, is less in respect of case B1, 

presenting a reduction in cost of 0.84%. 

 

As regards the performance measurements, case B2 presents a bottleneck at stations 4 and 5, 

where both are employed at 90% of their capacity, also there is a drop in the work in process and 

time cycle (Table 10).  
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A saving of 5.7% is obtained in the cycle time and there is a reduction of 5.67% in the work in 

process with respect to case B1.The analytical results for the work in process and the cycle time 

differ by -4.24% and -4.30%, respectively. 

 

Table 10. Optimum service time and properties at each node: analytical vs simulation 

Sta. 

Optimum 

service 

time 

(days) 

Capacity 

(%) 

Cycle time 

(days) 

Work in 

process 

(units) 

Capacity 

(%) 

Cycle 

time 

(days) 

Work in 

process 

(units) 

  Analytical Simulated 

1 0.01 30.00% 0.014 0.429 29.90% 0.014 0.423 

2 0.028 84.00% 0.175 5.25 83.80% 0.186 5.571 

3 0.027 60.80% 0.069 1.548 59.80% 0.068 1.507 

4 0.024 90.00% 0.24 9 90% 0.244 9.200 

5 0.06 90.00% 0.6 9 91% 0.648 9.750 

6 0.03 61.90% 0.079 1.623 61.20% 0.080 1.651 

7 0.03 73.10% 0.112 2.721 73.28% 0.113 2.773 

Property Analytical Simulated Difference  

Work in process 29.57 30.88 4.24% 

Total cycle  time 0.493 0.5152 4.30% 

 

 

Cases A, B1 and B2 are comparable with each other. Figure 8 shows the comparison in cost of 

case A with cases B1 and B2. The cost of model B2 gives a better solution than case B1, which 

means it is worth considering the service time as a variable in order to improve the performance 

of the system.  

As we have already mentioned, case A gives a lower cost, however this does not imply that it is a 

better solution, on the contrary, this is because additional elements are being incorporated into the 

model, to with: constraint on the flow, constraints on each node; all the above results in the 

feasible region shrinking. 
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Figure 8. Costs of cases A, B1 and B2 

Case B3 

This model incorporates the service costs and queuing cost at each station. The values, which are 

given in table 11, are arbitrary as the only criterion for assigning them was for the queuing cost to 

be more expensive than the service cost. The rest of the model does not have any alterations. The 

comparisons shall only be made with model B4, which is described further on. 

 

Table 11. Service cost data and queuing cost 

Node 1 2 3 4 5 6 7 

Service Cost $5 $3 $16 $10 $4.50 $8 $8 

Queueing cost $6.50 $15 $17 $15 $12 $13 $11 

 

 

Table 12. Flow through each arc 

Arc 1 - 3 1- 4 2- 3 2 - 4 3- 5 3 - 6 3 – 7 4 - 5 

Fraction 0.750 0.250 0.292 0.708 0.25 0.5 0.25 0.25 

Flow 22.500 7.500 8.765 21.235 7.82 15.64 7.82 7.18 

 

Arc 4 - 6 4 - 7 5 – 8 5 - 9 6 - 8 6 - 9 7 – 8 7 - 9 

Fraction 0.250 0.50 0.250 0.750 0.421 0.578 0.75 0.25 

Flow 7.184 14.36 3.75 11.25 9.62 13.21 16.63 5.54 

 

With the flows given in table 12, the properties of the system are shown below: used capacity, 

cycle time and work in process (Table 13). 
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Table 13. Properties in each node: analytical vs simulation 

 

Sta. Capacity 

(%) 

Cycle 

Time  

(days) 

Work in 

process 

(units) 

Capacity 

(%) 

CycleTime 

(days) 
Work in process 

(units) 

 Analytical Simulated 

1 30.0% 0.014 0.429 29.43 0.014 0.417 

2 84.0% 0.175 5.250 84.52 0.187 5.63 

3 84.5% 0.174 5.434 82.97 0.154 4.75 

4 86.2% 0.217 6.225 85.64 0.208 5.98 

5 90.0% 0.600 9.000 89.14 0.528 7.92 

6 68.5% 0.095 2.171 67.32 0.091 2.04 

7 66.5% 0.090 1.989 67.32 0.088 1.95 

Property Analytical Simulated Difference 

Work in process 30.496 28.712 6.21% 

Total cycle time  0.508 0.48201 5.3% 

 

The first significant fact are the overall results obtained for cycle time and work in process, which 

are lower than those for case B1. The work in process obtained of 30.496 units is 1.60 units 

fewer, which represents a 5 % reduction. In the case of the cycle time, the result is 0.508 days and 

represents a difference of 0.027 units; once again if we assume that 1 month =30 days, then the 

new cycle time is 15.248 days and represents a 5% improvement in respect of case B1.  

Here it is worth mentioning that a desirable goal for any administrator is to shorten the customer's 

queuing time and decrease the inventory in process. In both cases the customer would perceive an 

improvement in the service they receive: less of a wait to receive their product or else less of a 

wait to be served. 

We can also see that there is only one bottleneck in this example and this is at station 5, which is 

at 90% of its capacity, having on average 9 units in a queue, which is followed, in terms of 

holdups, by stations 2, 3 and 4. 

The analytical results for the work in process now show a difference of 6.21% and in the case of 

the cycle time, of 5.3% in respect of the results obtained by simulation. 

As for the costs, having analyzed table 14 in detail, we observe that station 3 represents 26.7% of 

the total costs and what stands out is that this has the highest service cost, in other words, service 

is expensive at this station. Furthermore, when we look at the queuing cost column, we can see 

that station 5 has the highest congestion cost, therefore, from a monetary perspective, queuing at 

this station is the most expensive. 
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Table 15 shows the costs of transport, the operating cost of the stations and the total cost of the 

system. In this example in particular, the cost of the transport represents approximately 60% of 

the total cost. 

Table 14. Analysis of cost per station 

Station Service cost WIP cost $ Total / station % 

1 $500.00 $2.79 $502.79 19.6% 

2 $107.14 $78.75 $185.89 7.2% 

3 $592.59 $92.37 $684.97 26.7% 

4 $333.33 $93.37 $426.71 16.6% 

5 $75.00 $108.00 $183.00 7.1% 

6 $266.67 $28.22 $294.88 11.5% 

7 $266.67 $21.87 $288.54 11.2% 

 

 

Table 15. Overall costs 

 

Operating cost of the stations $2566.78 40.44% 

Transport cost $3,781.69 59.56% 

Total operating cost $6,348.47  

 

 

Conventionally in a queuing network, an administrator focuses their attention on the bottleneck, 

however and as we can see in the results described above, there are other considerations that 

should not be ruled out.  

In a situation like the one in the example being analyzed, the decision-maker has several possible 

directions where they could propose improvements: they can take individual (service, congestion) 

costs into account; consider the overall cost; focus on suggesting improvements either to temper 

the effect of the production bottleneck or for the cost of transport which, in this case, represents 

60% of the system’s total operating cost. 

 

Case B 4.  

In this variant we must now determine the service times for stations that minimize the cost of 

flow in the network and take the values pij between pairs of nodes as fixed, so there is no change 

in the flows. The values are taken from the model B3 solution and Table 16 shows the flows that 

are obtained by analytical methods.  
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Table 16. Flow through each arc 

Arc 1 - 3 1- 4 2- 3  2 - 4 3- 5 3 - 6 3 – 7 4 - 5 

Fraction 0.750 0.250 0 1 0.25 0.5 0.25 0.5 

Flow 22.500 7.500 0 30 5.63 11.25 5.63 18.75 

 

Arc 4 - 6 4 – 7 5 – 8 5 - 9 6 - 8 6 - 9 7 – 8 7 - 9 

Fraction 0.250 0.25 0.250 0.750 0.613 0.387 0.75 0.25 

Flow 9.38 9.38 6.09 18.28 12.66 7.97 11.25 3.75 

 

 

The second column in table 17 shows the optimum service time. Looking at the results of case B4 

we can see that the solution tends to balance the used capacity of each station: stations 2, 5, 6 and 

7, at least, show very little difference between each other.  

 

In this case the bottleneck is to be found at station 4 where the used capacity is 83.33%, followed 

by stations 1 and 3.  

 

Table 17. Optimum service time and properties at each node: analytical vs simulation 

 

Sta. 

Optimum 

service 

time 

(days) 

Capacity 

(%) 

Cycle 

time 

(days) 

Work in 

process 

(units) 

Capacity 

(%) 

Cycle 

time 

(days) 

Work in 

process 

(units) 

  Analytical Simulated 

1 0.028 82.77% 0.160 4.804 82.22% 0.147 4.437 

2 0.024 71.01% 0.082 2.449 70.74% 0.086 2.555 

3 0.037 82.15% 0.205 4.601 81.97% 0.182 4.045 

4 0.022 83.33% 0.133 5.000 83.42% 0.135 5.051 

5 0.031 75.14% 0.124 3.023 74.07% 0.118 2.847 

6 0.038 78.08% 0.173 3.562 79.23% 0.185 3.892 

7 0.051 76.76% 0.220 3.303 76.85% 0.230 3.460 

Property Analytical Simulated Difference 

Work in process 26.74 26.38 1.36% 

Total cycle time 0.445 0.439 1.36% 

 

Station 3 contributes with 31.9% of the total costs of the system, followed by station 4 (Table 

18). 
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Table 18. Analysis of cost per station 

Sta. service-cost  Queuing cost  $ Total / station 
% 

1 $ 181.23  $ 31.22 $ 212.45  9.9% 

2 $ 126.74  $ 36.74 $ 163.48  7.6% 

3 $ 592.76  $ 92.20 $ 684.96  31.9% 

4 $ 352.84  $ 65.62 $ 418.47  19.5% 

5 $ 95.96  $ 28.46 $ 124.42  5.8% 

6 $ 231.28  $ 48.71 $ 279.99  13.0% 

7 $ 221.62  $ 44.18 $ 265.80  12.4% 

 

It is worth pointing out that both the transport cost and the operating cost of the stations are 

slightly lower than the ones obtained in case B4 (Table 19). 

 

Table 19. Overall costs 

Operating cost of 

the stations:  
$2,049.94 36.24% 

Transport cost $3,779.53 63.76% 

Total operating cost  $ 5,829.47  

 

Cases B3 and B4 are compared in Figure 9. We can again see that it is a good idea to treat the 

service time as a variable, as this makes it possible to get a better solution: The savings in costs 

we obtain through finding the optimum service time and the optimum flow between stations is 

6.58%, while the time cycle decreases by 10.83%. The comparison of B3 and B4 with cases A, 

B1 and B2 is not considered valid because said models represent other systems as they do not 

include either service costs or queuing costs. 
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Figure 9. Costs of cases B3 and B4 
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Conclusions 

The incorporation of new elements into a known model enriches the information that can be 

extracted on obtaining its solution. 

In the case of the networks flow, the conventional minimum cost flow model can be expanded by 

assuming that each node is a station that provides a service j has a mean of Ts. In this case the 

addition of elements from the queuing networks makes it possible to obtain additional 

information about how the resources are being employed as well as, for example, getting metrics 

such as the time cycle and quantity of work in process. Equations of queeing systems take into 

account the stochastic component of a supply chain. 

In this paper we tested a model for a single product and a single server, and can be applied to the 

analysis of a supply chain, however it can be broadened to work with a variety of products, in 

which case it falls within the multi-commodity flow problem with which a line of action is 

decided. 

Experiments showed that the optimal solution obtained with the minimum cost flow model 

changes if the nodes are considered as queueing systems. Another fact observed is that, when the 

nodes are queuing systems, the optimal solution obtained with the model tends to balance the 

workload in the nodes and also tends to distribute the flows through the network.   

The equations for the properties (WIP and cycle time) are analytic approximations. We observe 

in the tests that were done that there is a difference between the analytical and simulated results, 

with the biggest difference being observed in case B3 and the smallest difference being observed 

in case B4. Even so, we can see that the analytical results have an acceptable level of accuracy.  

Under the assumption of Poisson demand, service time exponentianlly distributed and stability of 

the system, managers and practitionares can expect that the proposed analytical model can be 

considered as a reliable tool for the analysis of a supply chain. 

The conventional minimum cost flow model can be expanded to incorporate elements from 

queuing networks such as variability of demand, variability of service time, and variability due to 

failures or set-ups. 
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Appendix 1 

The following appendix describes in a general way the sections corresponding to the formulas of 

queueing theory coded in the template. It follows the sequence proposed in Curry and Feldman 

(2009). The template calculates properties of systems with up to 10 stations of G/G/1 queueing 

systems. 

 

 

Figure A1. Partial view of the spreadsheet template: Paths, properties of the network, external 

flows and costs of the queues 

 

The template is divided into the follows sections: Process path (probability matrix), External 

flows, Properties of the network (figure A1); also with the costs of the stations, Table of origin-

destination costs, flow between nodes, cost of the flow between nodes, Operating cost of the 

stations, transport cost and total cost of the system (figure A2). 

The shaded cells are the data that should be entered, for example: External flows (C16:C25) and 

their standard deviation of the arrivals (D16:D25), service times (O3:O12) with their standard 

deviation (P3:P12). Other data are service costs (O16:O25), queuing costs (P16:P25) and the 

costs of transfer between nodes(X3:AG12). 
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Figure A2. Partial view of the spreadsheet template: Costs of transport and flows 

 

Flow in the network 

First it is necessary evaluate the arrival flow to each station with eq. (6). Once the user has 

entered all data, the spreadsheet evaluates the transpose with the following function: 

=TRANSPOSE (C3:L12) 

After, the spreadsheet calculates the difference Pt- I and then gets its inverse: 

=MINVERSE(C63:L72) 

The arrivals to each station are obtained by multiplying the vector of input flows by the inverse: 

=MMULT(C75:L84;C16:C25) 

 

 

Variability of the arrivals 

To solve eq. (8) the procedure is as follows: 

Each element of Q is calculated with eq. (9). For example: 

=IF ($G$16>0;G16*C3*C3*(AC34)/$G$16; ) 

The template transposes Q: 

=TRANSPOSE(P34:Y43) 

Evaluates (I-Q) and then obtains the inverse: 

=MINVERSE(P84:Y93) 

Each element of β vector is obtained in the range (P47:P53), (R47:AA56) and (AD47:AD53) 

using eq. (10). In the spreadsheet the formulas are: 
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IF(G16>0;(C16/G16)*F16;) + IF(G16>0;($G$16*C33/G16)*(C33*$AB$34*$Q$3+1-C33);) + 

…+ IFI(G16>0;($G$25*L33/G16)*(L33*$AB$43*$Q$12+1-L33); ) 

Function IF is used to avoid division by zero. 

In the final step Ca
2 is obtained with Eq. (8), in the spreadsheet the formula is: 

=MMULT(P95:Y104;AE47:AE56)  

 

Cycle time and Work in Process 

The template updates automatically the cells. The cycle time (T3:T12) and work-in-process 

(U3:U12) are obtained applying equations (11), (12) and (22). 


