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Abstract. The global public health crisis caused by the SARS-CoV-2-19 (COVID-19) 

pandemic has highlighted the need for research into contagion complexity. This chal-

lenge necessitates the development and testing of various approaches to manage rapidly 

changing information with high impact. In this paper, we employ time series analysis 

and complex networks analysis to compare the evolution, spread, and containment of 

COVID-19 pandemics in eleven countries and globally. Our analysis enables us to ob-

serve the dynamics of spread and the impact of different strategies employed by each 

country in increasing and decreasing cases through complex network techniques. Ad-

ditionally, we explore the transformation of data behavior over time as our understand-

ing of the virus improves. Our findings provide important insights into the limitations 

of using statistical models and suggest that simulation of new cases of COVID-19 data 

can be modeled using complex networks. The complex network model provides a gen-

eral description of contagion dynamics in the 11 countries and worldwide situation. 

This paper contributes by highlighting the limitations of using statistical models to infer 

and study early time series data and proposing the use of a complex network approach 

to study contagion dynamics. 
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1 Introduction 

In December 2019, a worldwide crisis was unleashed by a new coronavirus (SARS-CoV-

2-19), first discovered in China, that quickly spread throughout the world, with millions of 

confirmed cases [1]. A behavior analysis on the spread of new cases using time series analysis 

enables us to observe patterns of behavior as regards trends, seasonality, and randomness. 

The different methods used for modeling aspects of the COVID-19 pandemic include math-

ematical models for studying its spread and complex networks for analyzing outbreaks like 

Wuhan [4]. Information about the dynamics of virus spread enables us to study the effects of 

the actions taken by the public health authorities and be able to estimate the numbers of the 

population that are infected [6]. Thus, we can make reliable predictions about its future evo-

lution in a specific timeframe and consequently be able to prepare the health system to deal 

with it [9]. 
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Using control approaches gives us quick treatments for a small part of the population but 

their effects help to fight the ravages of infectious diseases on large populations by adminis-

tering the smallest possible amount of medicine, thus enabling its greater availability. Statis-

tical methods for estimating representative distributions for certain variables of COVID-19 

such as hospitalization, medical appointments when the symptoms appear, and other specific 

clinical cases have also been used to describe the dynamics of disease transmission [12]. 

These analyses support the decision-makers reports and the implementation of policies, such 

as closing borders and international flights, enacting national lockdowns, closing parts of a 

city or the economy, relaxing said restrictions, and deploying equipment and resources for 

field epidemiology [13]. The policies applied throughout the world for the mitigation of 

COVID-19 include [14] restrictions such as mobility, socio-economic, physical distancing, 

hygiene measures and changes in public communication about the situation. In this paper, we 

highlight the use of algorithms that, in combination with network models, contribute to mod-

eling the efficiency of drugs that were not initially de-signed for viral treatments but that have 

been used to treat COVID-19 [18]. This comparison is based on time series characterization, 

a visualization algorithm to convert all data into networks, which will be analyzed using 

complex network metrics. 

     The paper is organized as follows: Section 2 presents the analysis of COVID-19 new cases 

data in many countries at the same time. Aiming to conserve and describe the infection be-

havior with population response to sanitary measures. All countries decided to implement 

different strategies to avoid the increase in COVID-19 new cases, the reason why every coun-

try has a particular infection behavior. Finally, the results are presented in section 3, preced-

ing the conclusion and discussion. 

2 Case Study Analysis 

These countries were selected due to the data with the greatest spread of the epidemic and 

considering that all continents are considered. 

The countries selected in this paper are: United States (US), Mexico (MX), Japan (JP), 

India (IN), Russia (RU), South Africa (ZA), Italy (IL), Germany (DE), Morocco (MA), Neth-

erlands (NTH), Brazil (BZ) and we included the global information as a frame for the world-

wide behavior of the COVID-19 pandemic. 

The data on the new Covid-19 cases were obtained from the World Health Organization, 

defining the confirmed cases listed on its website, in daily reports as an analysis unit [19]. 

Fig. 1, shows the comparison between the calculated percentage ranking with the population 

density of each country versus the new cases published by the WHO ranking. Graph A and 

graph B contain the same new cases data but the first one presents the ranking of countries 

with more population contagion. Meanwhile, graph B shows the COVID-19 new cases re-

ported ranking. For example, the US keeps the largest number of new cases reported and is 

the country with the most infected population. Besides, public portals report India as the 

second country with more cases in the world, but with a large demography population can be 

placed in the tenth place of the eleven countries analyzed in this work. Different from Italy 

and Netherlands ranked in lower order but both are countries with the largest population 

infected. Owing to the number of graphics generated for said analysis, we have used the ones 
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corresponding to Mexico as an example. Graphics for the other countries are given in the 

Appendix A (Appendixes can be seen on: https://github.com/SashikoSR/COVID-19). 

 

Fig. 1. Comparison between population density ranking and the World ranking of daily new cases pub-

lished by the WHO. 

2.1 Data Path: From the Repository to the Complex Network Model 

The complex network model is built using the networks of new COVID-19 infection cases 

from each of the 11 countries. To determine the countries’ analysis feasibility, the new cases 

data published in public and open repositories were compared.   For example, in the portal of 

each country, the total new cases recorded were reviewed and compared on three additional 

databases (WHO, Hopkins, and the country’s database). For some countries, there was a huge 

difference between the published records, both in the total number of new cases and in each 

day’s records. These inconsistencies are a natural result of the methodological adjustments 

made by each country, but this does not conserve the propagation dynamics, it only accumu-

lates the data to reach a total of new cases that is closer to reality. The difference between the 

databases and the data corresponding to each country is wide and there is a lot of incon-

sistency between the data, which has an impact on the feasibility of using this database in the 

complex network model owing to the impossibility of propagating data inconsistencies in a 

way that represents the dynamics of propagation. 

For the model to describe the individual characteristics of the countries, a careful analysis 

of the published public data was made.  

Fig. 2 available in GitHub, shows the data comparison, transformation, and preparation 

states for the complex network model. 

The records of new cases are reported per day in the data sources. The data reports depend 

on factors such as the working day, the distance traveled to collect the data, to name but a 

few, and this generates noise in the databases. Grouping the data every week preserves the 

behavior while at the same time eliminating the noise that the daily period presents. 

It is important to mention that the aim is to analyze whether the data present a seasonality 

or a specific trend. However, this prediction is not yet possible due to the state of the pan-

demic worldwide. In the future, with more collected and recorded data, trend and seasonality 

analysis can be applied to determine the stability of the time series. Once the data has been 

selected, pooled, and analyzed, the visibility algorithm is applied for its analysis. This 
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algorithm connects the weeks that are visible to each other according to the newly reported 

cases. If there is a data segment that can be plotted in a polygonal shape, then all the nodes 

will be connected. Finally, the network is built from the newly reported cases for each week 

of the pandemic. 

2.2 Hot Issues of Data in Complex Networks 

New cases of COVID-19 reports reflect the different updates of methodologies for collecting 

the transmission. Over time, all the countries changed the criteria for the new cases records. 

In the data treatment framework, the natural evolution of the COVID-19 pandemic content 

the accumulation of the new cases total, but the time series do not show the propagation 

dynamics. It is common in complex networks to deal with different types of data, and always 

an opportunity to demonstrate the characteristics of such data with classical tests. 

Fig. 45 available in GitHub, shows the classical treatments that demonstrate how the be-

havior of complex network data differs from others. It would be suitable to model the data 

under the same conditions for all the periods. Table 1 contains the results of the different tests 

applied to new case data. Table 2 shows the normality test results of the time series for every 

country analyzed in the complex networks model. 

Table 1. Statistical tests for new cases of COVID-19. 

Data Analysis by week 

Countries KS (Two sam-

ples) 

Conclusion Chi 
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Conclusion Box-
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Mexico-South 

Africa 
1.54E-04 1.10E-06 2.30E-14 

South Africa- 

Russia  
4.95E-08 3.82E-04 9.66E-15 

Russia - Mo-

rocco 
2.20E-16 3.82E-04 9.66E-15 

Morocco - In-

dia 
5.77E-15 3.61E-03 7.77E-16 

India-Brazil 4.14E-02 3.37E-03 7.77E-16 

Brazil-Nether-

lands 
1.33E-15 9.01E-07 6.66E-16 

Netherlands-

Germany 
4.14E-02 2.12E-02 2.00E-15 

Germany-It-

aly 
7.17E-01 Similarity 1.80E-02 2.78E-15 

Italy-Japan 1.39E-05 Without 

similarities 

8.47E-02 
Similarity 

2.11E-15 

Japan-US < 2.2e-16 8.13E-02 1.27E-14 

 

Kolmogorov-Smirnov demonstrates if the samples are different enough between them to 

infer future behaviors. The model variation represented by Lilliefors is for review of the nor-

mal distribution adjustment. On the other hand, chi-squares relate two variables and show if 
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the samples are associated or independent. And the run test allows testing if there is random-

ness in the subsequent order of the data. The statistical models were applied for the eleven 

selected countries according to the flow chart (see Fig. 44 available in GitHub). For each 

time series, data were prepared to be tested in the metamodel using RStudio packages.  

Through this additional data analysis, we conclude that it is not an option to transform data 

into other distributions despite inconsistencies in all the time series. The data used in the 

model represents a particular moment of COVID-19 transmission. Therefore, as mentioned 

before this type of data should not be transformed in other distributions. 

Table 1 demonstrates that the data we collected cannot be used directly for statistical pur-

poses or as input without prior characterization. Table 2, on the other hand, illustrates that it 

is not appropriate to transform the time series into other distributions due to two main reasons. 

First, complex network models commonly utilize the raw time series data to avoid losing 

important information during transformation. Additionally, time series analysis allows us to 

identify important features and patterns in the data that may be lost during the transformation 

process. Second, we propose characterizing the time series through time series analysis, 

which involves modeling the underlying trends and patterns of the time series. If this method 

is unable to infer information, a complex network model may be applied. This is particularly 

relevant in the case of epidemics, such as COVID-19, where the simulation of new cases can 

offer valuable insights about the available data. 

Table 2. Normality Test. 

Normality test KS (Lilliefors) 

Country Value Country Value 

Mexico 7.47E-02 Netherlands 6.56E-10 

South Africa 1.23E-10 Germany 1.69E-09 

Russia 2.13E-02 Italy 8.24E-09 

Morocco 6.59E-09 Japan 1.42E-08 

India 8.45E-06 US 1.71E-06 

Brazil 3.45E-03 Global 1.64E-02 

2.3 Time Series Analysis 

Time series decomposition is a mathematical procedure that splits the series into its three 

components: Seasonality Patterns that repeat with a fixed periodicity. Trend underlying trend 

of the metrics, ascendant or descendant. And Random or noise: the remainder of the original 

time series after the seasonal and trend series are removed. ACF (Auto-Correlation Function) 

was used to determine the autocorrelation values for any series with its lagged values. It 

describes how well the present value of the series relates to its past values. ACF considers all 

the series components while finding correlations. The use of PACF (Partial Auto-Correlation 

Function) enables the determination of residual correlation by removing the effects of the 

anterior lag(s) and the posterior lag(s). An accurate correlation is obtained if there is any 

hidden data displayed by the following lag. The subsequent lag is taken as an element while 

modeling, but the elimination is preferable of correlated highlights that create 
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multicollinearity issues [20]. The ACF and PACF plots are more commonly used to obtain 

the values of p and q to feed into ARIMA model frequently used for forecasts. 

In this work we used time series as a based for the visibility algorithm to transform time 

series to complex network and then analyze the complex network topology. It transforms the 

time series into a complex network through a visibility graph that provides a complete anal-

ysis while showing the properties of the time series in the network. Section 2.5 explains the 

visibility algorithm and a small instance is also set to define how the algorithm sets the data 

as a network. 

2.4 Time Series Analysis for the Eleven Countries Comparison 

Time series metrics were used to analyze reported data for new cases of COVID-19. The data 

used correspond to daily new cases of COVID-19 in 66 weeks since January 2020 for the 

eleven countries and the global data reported. The data was analyzed using MicroStrategy, 

Excel, and R. 

Fig. 3 available in GitHub, shows the graphs obtained in this analysis. The stage of the 

pandemic in each country (first wave and second wave), was used for its division. Graphs A 

and D correspond to the countries in the first wave, while graphs B and E represent countries 

in the second wave of infections. The behaviors analyzed were the seasonal variation index 

and non-seasonal data for each country vs. global behavior. Moreover, graphs C and F show 

Mexico’s behavior in respect of the global behavior for both metrics. 

These findings are only comparisons for the eleven studied countries, and the total and 

partial autocorrelation functions obtained for each country make it impossible to get accurate 

predictions for an overall view of the pandemic period of newly registered cases. However, 

when there is a higher number of new daily cases records, the correlational estimates between 

the values and the delays (Xt and Xt-2) shall be used to compare autoregressive models (Fig. 

3, available in GitHub). It is important to observe that the non-seasonal data for Mexico 

(graph F) shows an acceptable control of the pandemic, as the initial peaks were much lower 

in respect of the behavior during the first wave (graphs A and D) in the other countries. Nev-

ertheless, the data recorded by the countries have changed over time, which can influence the 

observed dynamics. As we can note in fig. 3, available in GitHub, no countries present sea-

sonally or a clear tendency in COVID-19 new cases data. In other words, the lack of the two 

aspects mentioned before in the time series cannot allow (during the period under review) to 

know the future behavior dynamics. As a tool, time series analysis is useful for understanding 

behaviors. This analysis can be used with another data period to study if the behavior presents 

predictive characteristics. Meanwhile, complex networks can complete the methodology for 

describing the governmental strategies and the effects of society's response to the COVID-

19 crisis dynamics. 

The analysis of the time series conducted in this study did not reveal any clear seasonality 

or trend in accordance with the models mentioned before. However, upon examining the data, 

we found that organizing it on a weekly basis was necessary to address noise, despite the 

absence of any discernible pattern. Our analysis also revealed that peaks in the data that de-

viated from the norm corresponded with holidays, weekends, or non-working days, though it 

was difficult to quantify the overall impact of these events on the time series. Furthermore, 

the practice of governments adjusting the data by adding the total number of deaths or non-

deaths on a specific day made it impossible to maintain or project any seasonality or trend 



7 

over the entire time series. Instead, this practice only reflects a more accurate representation 

of the total number of new cases, which, in turn, affected the overall behavior of the time 

series. These findings can contribute to the preparation of data for visibility algorithms to be 

used in complex networks. The data analysis was performed using RStudio and Microsoft 

Excel. 

2.5 Visibility Algorithm 

The main goal of the visibility algorithm is to map a time series into a complex network. To 

study and analyze it with all the techniques and properties of network theory, resulting in a 

more complete analysis and not just the time-series study. Another important thing is that 

this network inherits several properties of the time series. The algorithm criterion sets up two 

arbitrary data values (𝑡𝑎, 𝑦𝑎) and (𝑡𝑏, 𝑦𝑏) that will have visibility, and consequently will 

become two connected nodes of the associated graph if any other data (𝑡𝑐, 𝑦𝑐) placed between 

them satisfies: 

 𝑦𝑐 < 𝑦𝑏  + (𝑦𝑎 − 𝑦𝑏)
𝑡𝑏−𝑡𝑐

𝑡𝑏−𝑡𝑎
 (1) 

Fig. 4 available in GitHub, gives an example of a time series of 20 data values plotted as 

a periodic series by using vertical bars (the data values are displayed above the plot). Con-

sidering this as a landscape, we link every bar (every point on the time series could be days, 

weeks, months, years, etc.) with all those that can be seen from the top of the one being 

considered (gray lines), thus obtaining the associated network (shown in the lower part of the 

figure). In this network, every node corresponds in the same order to series data and two 

nodes are connected when there is visibility between the corresponding data and if there is a 

straight line connecting the series data, provided this “visibility line” does not intersect any 

intermediate data height. Using the algorithm, the associated network extracted from a time 

series is always Connected meaning that each node can “see” at least its nearest neighbors 

(left and right), the first and the last one at least sees one. And undirected, where there is no 

direct definition in the links. Also, invariant under affine transformations of the series data, 

the visibility criterion is invariant under rescaling of both horizontal and vertical axes and 

horizontal and vertical translations. Fig. 4b available in GitHub, shows the visibility algo-

rithm generated for the Mexico case. 

The visibility network of a time series remains invariant under several transformations of 

the time series as shown in Fig. 3 available in GitHub (a) Original time series with visibility 

links. (b) Translation of the data. (c) Vertical rescaling. (d) Horizontal rescaling. (e) Addition 

of a linear trend to the data. As can be seen in the bottom diagram, in all these cases the 

visibility network remains invariant. The key question is to know whether the associated 

network inherits some structure of the time series, and consequently whether the process that 

generated the time series may be characterized by using network theory. In the first step, we 

will consider periodic series. The example plotted in fig. 4a available in GitHub is nothing 

but a periodic series with period 4. The associated visibility network is regular, as long as it 

is constructed by periodic repetition of a pattern. The degree distribution of this network is 

formed by a finite number of peaks related to the series period, much in the vein of the Fourier 

power spectrum of a time series. Generically speaking, all periodic time series are mapped 

into regular networks, the discrete degree distribution being the fingerprint of the time series 



8 

periods. In the case of periodic time series, its regularity seems, therefore, to be conserved or 

inherited structurally in the network through the visibility map. 

 

2.6 Complex Network Analysis 

The complex network model is made up of 11 networks that represent each of the chosen 

countries, in addition to the global behavior of new cases. Each network is made up of nodes 

that represent. every week of the pandemic, containing the accumulated cases for 7 days. In 

particular, the networks consist of 66 nodes each covering a reporting period for new cases 

from January 2020 to August 2021. The links are connected through the visibility algorithm, 

which determines all the weeks (nodes) that are seen from each point, meaning that this al-

gorithm makes it possible to relate to each other those numbers of new cases for each week 

that have the same maximum number of closest cases, both: backward and forwards. 

After the creation of the network, network metrics such as clustering, closeness, between-

ness, assortativity, degree distribution, among others, are obtained to perform the complex 

network analysis. This provides an accurate network behavior approach. Fig. 5 shows the 

network created for Mexico’s case. 

When analyzing the metrics of the network associated with each country, the proportion 

of infected cases and the degree of control of the spread of the disease are compared. 

2.7 The Analysis of Complex Networks Metrics for the Eleven Countries 

The comparison of the metrics obtained by the complex network analysis allows the charac-

terization of the spread and disease spread control degree to determine how several variables 

such as the implemented policies, the population density, the degree policies fulfillment by 

the population among others change the behavior dynamics. 

Concepts such as degree (i.e., the number of links per node) or clustering (the number of 

neighbors that are also connected) are truly local quantities, depending on the state of a single 

node and its neighbors. Measurements of centrality, such as betweenness, depend on the state 

of the entire system and will be defined below as global. In between these two scales, we 

have the study of communities that range from a few nodes to the entire network [21]. 

 

Fig. 2. Visibility algorithm for Mexico. 
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3 Results 

The time series analysis was carried out in Excel and Origin. The visibility algorithm and the 

complex network were solved in RStudio. Table 3 presents the results obtained by complex 

networks metrics calculations. 

These results mark the contribution of the use of complex networks. This tool helps to 

achieve a general description of the 11 countries without missing the specific behavior of 

each country. For instance, the form in which COVID-19 new cases are increasing because 

of the health measures implemented during the lockdown. 

Table 3 shows the metrics obtained by using complex network analysis, and their inter-

pretation is presented below: 

Diameter: The diameter D of a network is defined as the longest distance you can find be-

tween two nodes in the network. Some other definitions (e.g., average distance) are possible 

[21]. In this complex network model, the diameter indicates how much time there is between 

weeks with a higher or lower number of infections, in other words, the cycles of recorded 

new cases. The results of the complex network analysis (Table 3) show that Japan and Italy 

presented the smaller diameter, while Brazil, Morocco, Germany, Russia, and Mexico pre-

sented the bigger diameter. It is possible to determine the control of the spread of the virus 

using the strategies applied if population density is considered. 

Mean distance: This metric gives the distance in a more general way since it tells us the 

average of the distances between every pair of nodes in the network. In our case, the mean 

distance represents the variation of new cases between the weeks before and after each node. 

If the diameter is small, then the weekly rise in new cases will be similar from one week to 

the next. For high diameter values, the new cases between one week and the weeks before 

and after will change without distinction, representing increasing uncertainty. In this case, 

for all countries, the mean distance is very similar with a very low variation, meaning that 

all countries have almost the same distance between nodes. According to the mean distance 

results (Table 3), the average number of weeks needed to observe a change in the behavior 

of the propagation dynamics that occurs between 2 or 3 weeks. 

Cliques: One of the first papers on community structure, published in 1949, defined a com-

munity as a group of individuals whose members all know each other. In terms of graph 

theory, this means that a community is a complete subgraph or a clique. A clique is a con-

nected subgraph with maximal link density. Two k-cliques are considered adjacent if they 

share k – 1 nodes [22]. In our problem, cliques indicate the time between the changes (adja-

cency), in other words, the behavior of the virus spread and the pandemic control period. 

The clique value translates into two behaviors: the number of weeks when the virus is 

spreading or the number of weeks when it is under control. A high clique value could mean 

more stability from one node to another (valley or peaks), while a smaller value represents 

a virus spread variability. The dynamics of propagation in the US are characterized by being 

very unstable and consistent with the value obtained from the complex network analysis (10 

cliques). India, South Africa, and Italy have the highest number of cliques in the entire net-

work (17 cliques). These values show minor variation in new cases from the previous week 

to the next one. The differences between the clique values for each country show that a 

higher clique value represents the countries that have contained the pandemic for extended 

periods, or when the increase in new cases takes more time. India and South Africa have the 
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same clique value. However, for South Africa, it represents the number of weeks that the 

pandemic has been under control (valley), and for India, it indicates the number of weeks 

the new cases have increased (peak). 

Density: The density of a network is defined as the ratio between <k>, the average value of 

the degree (the degree of a node), and N, which is the order (number of links) of the network: 

ρ = <k>/N-1, with ρ ≤ 1 [21]. For this complex network model, this metric establishes 

whether each country’s dynamics are scattered or dense, in other words, the connectivity 

degree between one week and the following ones or the impact of one on the other. India, 

South Africa, and Italy (0.32, 0.30, 0.29 respectively) present the highest density values, 

while Brazil, Mexico, and the US have the lowest values (see Table 3). This metric indicates 

new cases recorded over the weeks (66). For example, South Africa shows that new cases are 

mostly together in the peaks of the propagation dynamic. In contrast to the situations in Bra-

zil, Mexico, and the US, where all new cases are recorded over 60 or 50 weeks which causes 

a propagation dynamic more scatter. 

Assortativity: We can identify the presence of a community from nodes with equivalent prop-

erties. The level of ‘similarity’ of two nodes is usually computed using a mathematical quan-

tity called correlation. Usually, since the most immediate property of a node is the degree, 

we look for the presence of a correlation between nodes with a similar degree. There is no 

reason, in principle, to expect a particular correlation. Actually, in some situations, there is a 

tendency for high-degree nodes to be connected to other high-degree nodes. In this case, the 

network displays what is called assortative mixing or assortativity [21]. In our networks as-

sortativity measures two connected nodes that have a similar increase (or decrease) in the 

number of new cases, being positive when these changes vary slightly from week to week, 

and negative when this behavior is not alike. Japan is the only country with negative assort-

ativity (-0.03; see Table 3), which describes the occurrence of three gradual peaks and some 

valleys. As a metric, this behavior implies that there are several nodes of different degrees, 

meaning that it has many weeks in valleys or peaks. India has the highest assortativity value 

because these propagation dynamics (data for 66 weeks) show a noticeable increase and a 

long duration of a high number of cases, which implies that the degrees of the nodes are 

remarkably similar to each other throughout the entire time series. Another relevant behavior 

is the one presented by South Africa (0.149, see Table 3), where the new cases present two 

marked increments, which determines a valley that remains for several weeks. Despite that, 

it is an assortative network like India, the results of the model show the difference between 

the countries. 

Clustering: The clustering coefficient Ci of node i is a measurement of the number of links 

‘around’ vertex i. Ci is given by the average fraction of pairs of neighbors (of the same node) 

that are also neighbors of each other. In general, we can write the clustering coefficient as 

the fraction of actual links over the possible ones between vertices i, j, k. [21]. Global Clus-

tering refers to the probability of forming triangles between the nodes. It measures the mean 

proportion of neighbors a node has and presents two variations: global clustering refers to 

the entire network and local clustering that is calculated for each of the nodes, providing the 

mean of all the nodes. In this model, global clustering shows the influence of the government 

measures adopted by each country to contain the COVID-19 contagion rate. Global clustering 

for the eleven countries is between 0.58 and 0.81 (Table 3), meaning that many groups have 

formed during the 66 weeks. On the other hand, the local clustering represents the increase 
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of recorded new cases. For example, South Africa and Japan have high increments (Table 3). 

The eleven countries display similar values, but their behavior differs. If local clustering is 

higher, then there is also a higher probability of transitivity per node. 

Betweenness centrality: Sensitive measurement of centrality is given by the number of times 

we cross one node k in going from one node I to another j following the path of minimal 

length (distance d (I, j)). This number is called site-betweenness b(i) [21]. Another definition 

is a link or link betweenness, defining xij as the number of shorter paths that go through the 

link (I, j). Links connecting different communities are expected to have large xij while links 

within a community have small xij [22]. Betweenness centrality indicates the proportion of 

increased infections in respect of the previous and subsequent weeks. As a complex metric, 

this can be interpreted as the propagation period, including the rise in new cases, peak width, 

and decrease, representing how many weeks is COVID-19 active in the whole period. Ac-

cording to Table 3, there is not a wide difference in the countries’ values. The betweenness 

centrality values for Germany and the US are the same, corresponding to 0.33 both. This 

metric analysis and interpretation conclude that the COVID-19 pandemic is still propagating. 

Closeness: Centrality closeness is aimed at measuring how close a node is to other nodes in 

the network. This is done in terms of communication distance, as measured by the number 

of links between two nodes if connected by the shortest path, as the closeness metric is the 

mean shortest path to all other nodes [23]. Closeness represents the time when the new cases 

remain low or high for each country. In complex networks, a high closeness considers the 

existence of a few nodes with an extremely high degree. These nodes are called hubs. Table 

3 shows that Russia (0.28) and Brazil (0.33) present the lowest closeness value, meaning 

these countries have the highest variation between subsequent weeks. Japan (0.61) and the 

Netherlands (0.54) present several similar nodes, which means that the number of new cases 

is similar for a longer period, or it is remaining in the valley.  

Degree centrality: The degree centrality of a node refers to the number of links attached to 

the node. The standardized score is found by dividing each score by n-1 (n = the number of 

nodes). As for the centrality degree, the pattern of behavior regarding closeness is accentu-

ated for the following countries: Japan (0.52), Germany (.42), Netherlands (0.41), and Italy 

(0.35). Brazil (0.18), Mexico (0.19), India (0.19), and Russia (0.19) have similar values and 

the lowest values of the eleven countries. However, the dynamics between them are different, 

for Brazil and Mexico, this value means that the centrality degree is low because of the var-

iability in the number of infections that arise on consecutive weeks. Whereas, in the case of 

Russia and India, the similarity between the nodes represents the accumulation or drop in 

newly recorded cases. The highest centrality degree corresponds to Japan (0.52), which rep-

resents an accelerated rise in the number of COVID-19 infections in a few weeks, implying 

closed borders. 

Degree distribution: Degree distributions can be calculated by the ratio between the number 

of nodes in network G of degree k and N denotes the size of G (number of nodes). The 

equation p(k) = │dk(n)│/ N is exactly the proportion of nodes in G having degree k. Degree 

ki of node I is the number of links connected with node i. From this, it follows that this 

equation also has the meaning that a randomly chosen node in the network has, with proba-

bility p(k), k links. 

It is an interesting and important fact that many real-world networks like the World Wide 

Web (www), the Internet, social networks, citation networks, or food webs are not Poisson 
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distributed but follow a power law: p(k) = k-γ, γ>1 [23]. According to the complex network 

analysis, the eleven countries are free-scale networks. Free-scale networks consider that few 

nodes have a lot of connections while several nodes have few connections. It means that there 

are many weeks with records of COVID-19 new cases and that nodes with high values are 

connected to the rest of the nodes, which in complex network metrics are known as hubs. 

Table 3. Complex networks results. 

Global Ranking 1 2 3 6 8 9 15 20 21 36 41 

Country Global US India Bra-

zil 

Rus-

sia 

Italy Ger-

many 

Mex-

ico 

South 

Africa 

Nether-

lands 

Ja-

pan 

Mo-

rocco  

Max degree 33 28 34 24 28 42 43 25 36 43 48 37 

Min degree 2 1 1 1 1 1 1 1 5 1 4 2 

Mean degree 9.7 12.7 21.2 11.9 15.2 19.1 15.6 12.2 20.1 16.1 13.9 16.4 

Diameter 5 5 5 6 6 4 6 6 5 5 4 6 

Mean dis-

tance 
2.57 2.30 2.34 2.93 3.09 2.29 2.37 2.68 2.20 2.22 2.08 2.23 

Cliques 11 10 17 13 14 17 16 14 17 15 13 12 

Density 0.147 0.195 0.326 0.183 0.233 0.294 0.240 0.188 0.309 0.248 0.214 0.252 

Assortativity 0.084 0.087 0.712 0.675 0.610 0.579 0.217 0.609 0.149 0.176 -0.04 0.05 

Global Clus-

tering 
0.589 0.563 0.816 0.755 0.707 0.777 0.713 0.762 0.807 0.671 0.659 0.607 

Mean Local 

Clustering 
0.792 0.688 0.799 0.769 0.748 0.795 0.821 0.790 0.845 0.763 0.822 0.738 

Closeness 

Centrality 
0.476 0.367 0.375 0.331 0.286 0.432 0.457 0.374 0.412 0.545 0.611 0.351 

Degree  

Centrality 
0.353 0.236 0.197 0.186 0.198 0.352 0.422 0.197 0.245 0.414 0.524 0.316 

Betweenness 

Centrality 
0.514 0.331 0.513 0.490 0.376 0.410 0.332 0.395 0.485 0.496 0.476 0.418 

Eigencentral-

ity 
0.702 0.645 0.559 0.685 0.639 0.554 0.623 0.676 0.564 0.625 0.675 0.616 

 

 Fig. 6F available in GitHub, shows the distribution degree for Mexico, and the global 

distribution degree (Fig. 6A available in GitHub), which presents a p-law distribution, even 

the tail is longer. Graphs E and F show the evolution of the pandemic over time. Comparing 

plot E which contains new cases reported until September 2020, and plot F that corresponds 

to January 2020 until March 2021, the degree distribution shows the differences between 

nodes’ degrees. 

Other information obtained from the degree distribution metric is that countries with more 

infected populations behave similarly to graphs B, D, or F, such as the US, that reported 

8.84% of its population infected. Countries with a lower number of infected populations fol-

low a pattern like graphs A, C, or E, such as Japan, which reported 0.35 % of its population 

infected, both these findings are based on data up to March 2021. All of this means that with 
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the new cases recorded and the increased number of weeks elapsed, the distribution degree 

tends to function as a homogenous network. 

The advantage of using a complex network technique is to describe the entire dynamic 

behavior of the selected countries. The methodology proposed in this research does not use 

only time series analysis, due to the dynamic behavior of the data that is not reflected if this 

method is used alone. On the other hand, statistical methods only describe proportions and 

parts of the total behavior, while modeling a system by complex networks shows the varia-

tions and dynamic nature of data. 

When the complex networks metrics are understood in a social behavior context, the in-

ference about the relation of data behavior with sanitary measures can be done. 

4 Conclusions 

Time series analysis was used to organize each country’s behavior, which made it possible 

to determine that it is too early for there to be enough data (owing to the time the pandemic 

has lasted) to be able to establish a seasonality or trend of the dynamics of virus spread. The 

techniques used in this methodology can conserve particular and individual dynamics for 

each country, thus providing a specific contribution using complex network modeling in pan-

demic data while performing a whole analysis of the behavior of the eleven countries and 

overall behavior of covid across the world. We can discuss here the correlation between the 

metrics and the countries listed, as well as the exceptional cases where it can be assumed that 

this is because of how the policies for the contention of the pandemic were implemented in 

each country. 

A ratio has already been mentioned between the network's diameter and population density 

and to illustrate this we are giving the following tables that present the countries with smaller 

and larger diameters and their respective population densities. In the case of these countries, 

it can be expected that for a high population density, there is a shorter time between weeks 

for peaks or valleys and the dynamics of the pandemic are faster. Cliques refer to a higher 

number of weeks of contention or new cases, while density refers to newly recorded cases, 

which is where the two metrics coincide.   On the other hand, the density metric is low for 

Brazil, Mexico, and the US, which means that the spread is low over several weeks, which 

coincides with their low number of cliques.   However, there are countries, such as Morocco, 

that have a low number of cliques, but higher density, so we would have to examine, among 

other factors, the country ‘s contention policies once again.   For the results to be better un-

derstood, we should clarify that the density of the network is equivalent to the mean degree 

divided by the number of nodes minus 1.  So, for example, in the case of Mexico has a density 

of 0.1878, this is equivalent to the mean degree, which is 12.212 between the 66 nodes minus 

1, in other words, 65 nodes, resulting in 0.1878. Global Clustering and Betweenness central-

ity: In these two metrics, we can observe that South Africa and India have a high probability 

of the nodes (weeks) forming triangles (global clustering) while having at the same time a 

high (table 4) Betweenness metric as well as more cliques and higher density. This is im-

portant because, at the same time as triangles are formed in India and South Africa, they have 

a higher number of shorter paths that involve a node; in this case the weeks that have reported 

more cases. 
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Table 4. Comparison between clustering and betweenness. 

Country Clustering Betweenness 

India 0.815658 0.512773 

South Africa 0.806672 0.484567 

 

In a unique way from the papers found during the literary review, our paper seeks to de-

scribe, through complex network metrics, how government policies and the social response 

to them, affect the propagation dynamics in each country. But with the use of techniques, the 

components can be analyzed and described noticing that, from an appropriate association 

through modeling, we get results that contribute to an understanding of the evolution of the 

pandemic as a function of each country’s singularities such as population density, economic 

situation, type of government, or geography. The contribution of this work is given by using 

complex networks with their metrics and how each country applied the restrictions and the 

influence on the global behavior is confirmed. Furthermore, we can analyze cases over the 

world, analyze the impact of the vaccination and other analysis like mortality or analyze the 

different stages or waves from the pandemic. 

The main contributions of this work are that we analyzed the different time series for 

COVID-19, we applied the visibility algorithm to transform the time series into complex 

networks, analyze and compare the complex network metrics. As part of the future work, we 

can extend this work for the new cases, analyze the different stages of the pandemic, analyze 

the influence of the vaccination in different countries and apply the methodology to other 

countries and make a comparison among them. Simulation of complex networks offers sev-

eral advantages over traditional statistical approaches, as demonstrated in our study. By using 

simulation, we were able to analyze the time series data from eleven different countries sim-

ultaneously, while preserving each country's unique characteristics. This approach would not 

have been possible using classical statistical methods that rely on analyzing new cases of 

COVID-19 individually. The networks we constructed for each country and their global be-

havior enabled us not only to examine the data as a network and observe its behavior but also 

to compare the behavior between countries and the global data. This comparison allowed us 

to gain insights into the similarities and differences in the spread of COVID-19 among the 

different countries and how it impacted the global community. 
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