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ABSTRACT

An optimal strategy in order to contain the
epidemiological risk of the A(HINI) disease is
analyzed. We scope two different epidemic propagation
models, the epidemiological SIR model proposed by
Kermack and McKendrick (Kermack and McKendrick
1927) and a small-world network model, assuming that
the second one shows a better performance since it
considers the interactions between agents and also
presents a more realistically dynamic (Moore and
Newman 2000) than with the SIR model. To verify our
assumption, establishing the proper disease parameters,
a simulation is done for different epidemiological
scenarios with both models. Furthermore, the results of
simulation runs are employed for an optimal
containment model based on a vaccination or self-
isolation strategy. Additionally, other simulation were
performed in order to obtain an optimal policy using our
previous results from the spreading models simulation,
getting a better insight of the diseases behavior during
an outbreak.

Keywords: complex network, epidemiology, spreading
models, small world networks

1. INTRODUCTION

In 2009 the human flu A(HIN1) epidemics expanded
rapidly all over the five continents, with a
predominance of America by the current connectivity
conditions, becoming a pandemic in just a few weeks.
Public Health Institutions showed a lot of concern
because the lack of knowledge about this new subtype
of influenza virus, which showed a high spreading
factor and transmissibility in a short elapse of time.
Governments, the whole society and the World Health
Organization (WHO) considered this matter as a high
priority issue. This motivated to search strategies
needed to design adequate containment policies at the
proper moment of the outbreak in order to save, not
only lives, but expenses as well. But before carrying out
any analysis of cost-effectiveness, it is desirable to
understand the dynamic of the epidemic propagation. It
is necessary to understand the disease behavior as a
mathematical model of the epidemic. We implemented
spatial agent-based and real time situation simulations
to provide pandemic risk assessments and also we
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proposed optimal intervention and prevention strategies
as well as to estimate costs due to the planned policy.
The most common ways to control an outbreak are
vaccination and isolation, each one represents a
corresponding cost and benefit. An optimal intervention
should consider these factors in the scheme of the
epidemic containment policy, resulting on a “cost-
effectiveness” analysis. The A(HINI) disease is
characterized by pre-symptomatic, infectious and
recovery stages that makes detection and control cases
more difficult (Kuperman et al. 2001). Therefore we
explore some outgoing features of spreading dynamics
utilizing the epidemiological SIR model in order to
evaluate their parameters of contagious conditions,
applying on a dynamically changing small-world-like
network (Kuperman et al. 2001). Interactions within a
population is studied by means of different kind of
social networks, mathematically based on the structure
of the population, which in our case presents three
subpopulations that interact in proportion to their sizes.
With these zero dimensional models, it has been
possible to study the epidemic features, the asymptotic
solution for the density of infected people, the effect on
stochastic fluctuations on the modulation of an
epidemic situation as well as the thresholds values.
Another classical approach to the epidemic spread
describes spatially extended subpopulations, such as
elements on a lattice. We consider a population rarely
falls into either of these categories, being neither well
mixed nor lattices. Watts and Strogatz (Watts and
Strogatz, 1998) introduced small world network
analysis in order to study the dynamic of many social
processes such as disease spreading, formation of public
opinion, distribution of wealth, transmission of cultural
traits, etc. In the case of epidemiological models, it has
been shown that small world networks present a much
faster epidemic propagation than other studied epidemic
models, such as reaction-diffusion models, or discrete
models based on regular lattices of a social network
(Kuperman et al., 2001). In this paper we use the
epidemiological ~ SIR-Kermack-McKendrick model
(KMK) to acquire the epidemic features which are well
studied, later, with these parameters we simulate the
spread by means of a small-world network which, as
mentioned before, presents a much faster epidemic
propagation. Therefore we will be able to compare our
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results obtained with the KMK model. Understanding
these patterns will help direct the allocation of scarce
resources, thus facilitating appropriate community
preparation; furthermore it will help to design an
optimal containment strategy, which is the scope of this
work.  With this study we are able to examine the
relative importance of vaccination and self-isolation,
two common measures for controlling the spread of
infectious diseases (Yarmand et al. 2010). Since our
epidemic propagation models, either the
epidemiological SIR model and the small world
network model, require realistic parameters to estimate
appropriate behaviors of the threshold and propagation
of the disease, we focused on a specific mostly
homogenous population from the Mexico’s City
metropolitan zone in the range of ages form 20 — 64
years, which represents numerically the biggest social
group, moreover, it seems to be the most susceptible
population among the other age groups. Besides, having
more realistic data of the targeted population supports
the validation of our results. Additionally, simulation
results validation is also sustained on the corresponding
literature (Cérdova et al. 2010).

Once we have obtained results from both epidemic
propagation models (epidemiological SIR model and
small world network model), by means of simulating
with different parameters, we focused on an optimal
cost-effectiveness intervention. (Yarmand et. al., 2010),
proposed a linear model considering two control
measures: vaccination and self-isolation, having as
decision variables the proportion of the targeted
population under vaccination intervention and the
fraction of the population being self-isolated. We
considered this optimal model as adequate to scope the
effectiveness of either of both models inasmuch as it
presents a very useful simplicity for comparing our
results. Accordingly, thus we find that the objective
function is the linear summation of the relative costs of
vaccination and self-isolation by considering the
relative marginal costs, associated with each of the
decision variables. Constrains are related to the number
of individuals under treatment and to the percentage of
total infective individuals (attack rate). Hence the
present work seeks a strategy for mitigating the severity
of the A(HINI1) influenza pandemic based on the
threshold number Ro..

2. LITERATURE REVIEW

In this section we present an overview of the literature
pertaining to contributions related to the disease
spreading through a social network, especially on a
small work network. Also a review is done on
references  about  epidemiological  containment
strategies.

D. Watts and Strogatz (Watts, Strogatz 1998)
designed in 1998 a model of dynamic networks for
collective phenomena called “Small world”, which
differences the homogeneous agents as it had been
treated before in heterogeneous agents, whose
interactions are random, producing an intermediate
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between regular networks and completely disordered
ones, being better its approximation for social networks,
neuronal networks, electricity transmission networks,
and even for diseases’ spread networks. Their work was
related with the model realized by L. Sattenspiel and C.
Simon in 1987 (Sattenspiel and Simon, 1998), which
defined mathematically the spread and prevalence of an
infection inside a heterogeneous population, considering
the possible interactions within the population. Their
work is the main reference for the construction of the
diseases spread. M. Kuperman and G. Abramson
(Kupermann and Abramson, 2001) wused in the year
2001 this approach to networks in order to build the
spread of an epidemic, in like manner, Matt J. Keeling
and Ken T. D. Eames (Keeling and Eames, 2001)
proposed epidemiologic models related with networks.
Meanwhile, Cristopher Moore and M. E. J. Newman
(Moore and Newman, 2000) presented a model that
approached the spread of an epidemic using a model of
percolation and networks like the “Small world”. Alexei
Vazquez (Vazquez, 2006) came up with a work that
supported the idea of analyzing the topology of an
infection spread based on the analysis of a network with
homogeneous nodes with a correlation with the
measures of the K network, concluding that the rate of
contagion between an infected node and a susceptive
node is proportional to the average measures of the K
network, therefore suggesting that the spread of an
epidemic can be researched with the model of the
networks “Small world”. Eduardo Cuestas, Mario
Vilar6, and Pablo Serra (Cuestas et al., 2011) proposed
a model of predictability of the spatial and temporal
spread of the epidemic of the influenza HINI1 in
Argentina with the method of percolation. The
researchers Mauricio Canals and Andrea Canals (Canals
and Canals, 2010) also designed a model based on a
model of percolation for the epidemic of the influenza
HINI1, and the obtained data would be compared
geographically by the WHO (World Health
Organization), indicating with this the validity of this
kind of approach. Dionne M. Aleman, Theodorus G.
Wibisono, and Brian Schwartz (Aleman et al., 2011)
made a simulation of the spread of a disease during a
“pandemic” outbreak based on non-homogeneous
agents. In regard to the works that have been realized in
Mexico, the most notorious one is the one made by
Coérdova Villalobos, et al, (Cérdova et al., 2010), in
which a compilation of 42 experts of many fields in
health sciences is done. These studies are about
epidemics from several points of view, allowing the
comprehension and planning against the influenza A
(HIN1). At the National University of México
(UNAM) there is a project that studies collective
phenomena called FENOMEC, and in this project G.
Cruz-Pacheco, L. Esteva, A. A. Minzonil, P.
Panayotaros, and N. F. Smyth (Cruz-Pacheco 2005)
proposed a mathematical model for the spread of an
epidemic.

Thus once that the spread of an outbreak has been
studied, many projects have been based on these
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models and proposed strategies to contain it.
Kleczkowski A., Olés K., Gudowska-Nowak E. and
Gifniigan C.A. (Kleczkowski et al., 2011), designed a
strategy based on a small world network that would
reduce the costs of controlling the spread. Meantime,
Pinar Keskinocak, Ali EkiciJulie, and L. Swann
(Keskionacak et al., 2013) designed a plan for food
distribution during an influenza spread. Sean Carr and
Stephen Roberts (Carr and Roberts, 2010) developed a
simulation to locate clinics and hospitals, and the
distribution of resources during the spread of the
epidemic of the influenza HINI1. Yarmand, Ivy,
Roberts, Bengtson and Bengtson (Yarmand et al., 2010)
studied and analyzed the cost vs. the effectiveness
between vaccination and isolation related to the
epidemic of the HINI1. Another research about the
distribution and optimization of vaccines during an
outbreak of HIN1, was made by Yarmand, Julie S. Ivy,
Brian Denton, Alun L. and Lloyd (Yarmand et al.
2014), this research considered the optimal location of
the vaccination in two phases in different geographical
regions that are under uncertainty.

3. EPIDEMIC SPREADING MODELS

3.1. SIR kinetic model

Traditionally the process of disease spreading relied on
differential equations whose solutions describe the time
propagation of the disease within uniformly mixed
populations which means that all individuals in the
population are equally likely, hence any infected person
is equally likely to infect any other person. The
spreading process itself is modeled using rate equations,
describing population flows between epidemiological
classes of individuals, such as susceptible (S), exposed
(E), infective (I), and recovered (R). The simplest of
these types of models is the widely-utilized Susceptible-
Infected-Removed (SIR) model, in which susceptible
individuals (S) may become infected (I) and continue to
infect others until finally removed (R) from the
population due to recovery, death, or self-containment.
This compartmental model, however, doesn’t consider
heterogeneity nor the spatially or the contact patterns
between individuals effects, but only that an infected
agent transmits the disease to a susceptible agent with a
time rate t. The total population is given by
S(t)+1(t)+R(t) = N(t). This model assumes a closed
population, meaning there are no births, deaths or travel
into or out of the population. Between S and I stages,
the transition rate is B I, where B is the contact rate,
which takes into account the probability of getting the
disease in a contact between a susceptible and an
infectious subject. Stages I and R interact with the
transition rate of recovery or death y. If the duration of
the infection is denoted t, then y = 1/t, since an
individual experiences one recovery in T units of time.
The SIR system described above can be expressed by

the following set of ordinary differential equations:

dS_ s
dt B
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fig.1 SIR compartmental model

A key term in the study of epidemics is the basic
reproduction number Ry (also called basic reproduction
ratio). This ratio is derived as the expected number of
new secondary infections from a single infection in a
population where all subjects are susceptible. This
quantity describes the epidemic threshold such that
when Ry > 1, the population is vulnerable to a large
scale epidemic, although not guaranteed to experience
one. Conversely when Ry < 1, the population only
experiences small local outbreaks. Hence R, serves as
an order parameter for the phase transition. In the SIR
model the Ry number is calculated by:

i (50)

N
Ro=f—=N*»——"-+—
Y (N-=S®)
For setting up the parameters for the simulation, R,
was set to Ry=1.4.

3.2 SIR model on dynamic Small-World network

As mentioned in the previous sections a population
rarely shows a well- mixed behavior, nonetheless a
population shows spatiality between individuals,
heterogeneity. Therefore an outlook on social contacts
arises for describing the spread of a disease. Instead of
relying on this kind of mean-filed models we used an
epidemic propagation model based on the effects of
contacts patterns between individuals, described by
contact networks, where the vertices correspond to
individuals and the edges to contacts between them
(Chen, 2005), resulting on much insight in the context
of spreading processes obtaining a more realistic
network topologies such as small-world networks. For
developing the model we capture some outlining
features of the A(HIN1) epidemic spreading dynamics
by utilizing the SIR mechanism on a dynamically
changing small-world contact network (Saramiki and
Kaski, 2005). For a formulation of our spreading model,
we consider a social network, such as various networks,
displays the small world property, which means that
long-range contacts between individuals result in short
average distances along the edges of the network. In
epidemiology these long-range contacts can be
considered either infrequent contacts or random
encounters taking place in an underlying regular short-
range network structure, which in turn can be
interpreted as groups of people having regular or
frequent contacts. Therefore, we define our network as a
regular one-dimensional ring-shaped lattice of N

122

978-88-97999-38-6; Affenzeller, Bruzzone, Jiménez, Longo, Merkuryev, Zhang Eds.



vertices with fixed coordination number 2z =4, with
additional temporary long-range links, a clustering
coefficient C(k) between 0 < C(k) < 1, and changing
their configuration at random with a rewiring
probability P. The rewiring mechanism is equivalent to
link exchanging method [13], at each time step, we
randomly select a pair of edges A-B and C-D. These
two edges are then rewired to be A-D and B-C. To
prevent multiple edges connecting the same pair of
nodes, if A—D or B—C already exists in the network, this
step is aborted and a new pair of edges is randomly
selected. (Figure 2).

For the spread dynamic we use the SIR
mechanism, such as any node is labeled as susceptible
S, or as infected I or as recovered R. Initially, the
number of susceptible individuals is N — I, where I
corresponds to the initial outbreak size. The dynamics
of the model is such that at every discrete time step of
the network with lenght At, it is randomly rewired and
each infected individual in the network infects its new
nearest neighbors, if susceptible, so that each infection
occurs with an attack rate transmission (ART)
determined by the own features of the A(HIN1). We
established this ART = 5% and 10%. Once a vertex
becomes infected, after some virus check frequency it
becomes recovered R with a random gain resistance
chance. At this stage the individual recovers and can no
longer be infected or infect others (the individual is
resistant to the virus). The process ends until any
individual is no longer infected.

Figure 2: Schematic of epidemic spreading on a
dynamic small-world contact network with coordination
number 2z = 4. At times ¢ = 0,2,3,4 three vertex are
infected (solid red circle). Then the infection spreads to
neighboring vertices as well as randomly chosen far-off
vertices with a rewiring probability P. Recovered
vertices are shown as solid grey circles.

3.3. Optimization model

Additionally to the propagation model we needed to
prepare an optimization model in order to obtain the
optimal strategy based on a cost-effectiveness scope
(Ferguson et al. 2005). As mentioned above, a linear
model was used being decision variables vaccination
fraction and self-isolation fraction among infected
population denoted by p; and p, respectively.
Constrains are the number of individuals under
treatment, percentage of total infective individuals, and
the threshold number R, those data were previously
estimated by means of the epidemic spread model
simulation. And the objective function is related to
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relative costs of the considered interventions, cl for
vaccination and c2 for self-isolation, obtaining an
optimization model as the following:
min Z=clp; + c2p;
Subject to:
Max number of people under treatment (related to
surge capacity) < V1
% of infected people among the population <V2
Susceptible < R
Since c1 and c2 are relative costs, then we have
cl+c2 =1
0< V1< total population
0<V2<1
R= (1-% susceptible population)*R,
Where V1, V2, cl and c2, are determined by the
modeler based on our results of the prior epidemic
models simulation. We also assumed costs ¢l and c2
being both 0.5 (Yarmand, 2010).

4. SIMULATION
As mentioned, we prepared two simulation models for
the spread of the A(N1HI1) epidemics, one using the
KMK epidemiological SIR model (Kuperman and
Abramson 2005; Kermack and McKendrick, 1927) and
the other uses the SIR model mechanical on the small-
world network dynamic, as in the Watts and Strogatz
model (Moore and Newmann 2000; Kuperman and
Abramson 2005; Saramiki J, Kaski 2005; Xiao et al.
2003). Once we established the parameters, NetLogo
5.0.4 software was used to perform the simulation for
different scenarios of propagations disease. This
software was employed, mainly, because of its agent-
based framework, which was of great relevance for the
scope of this research, also the versatility of this
software was proven, and given that it contains several
libraries in which it is possible to develop different kind
of models with remarkable simplicity without loss of
generality. Besides, it has not been enough employed in
the epidemic spread simulation field. Thereby we were
able to perform our simulation, to obtain the needed
scenarios for a later searching of the optimal epidemical
mitigation strategy. The KMK virus spread model
included in the model libraries was used for the search
of features for the A(HIN1) epidemic. As mentioned,
the NetLogo agent-based framework was useful to
develop our small-world network virus spread model.
For the optimization model Lingo software was
employed to optimize the simulation results.

4.2. Model parameters

A simulation was made considering the A(HINI)
disease parameters based on the WHO assumptions for
our targeted Mexico city’s population and on the
gathered data during the 2009 outbreak. Definitions and
values of the corresponding parameters needed for the
KMK disease spread model dynamic as well as for the
small-world network model are depicted in Table 1
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Table 1: Definitions and values of parameters for

KMK model
Parameters Definition Estimated value
1y Infectious 1.5 days
period
1/x Latency 1.9 days
period
Average Total time 3.4 days (84 hours)
recovery since the
time contagious
moment
Recovery Inverse of 98%
chance mortality
rate
Attack Rate Is the 7.5%
Transmission infection
ART chance
Transmission | Corresponds | is adjusted during the
risk to the simulation process to
infection acquire the
chance. This corresponding R,
parameter threshold value
affects
directly the
transmission
rate

4.3. Simulation runs

Once we established the parameters, NetLogo 5.0.4
software was used to perform the simulation for
different scenarios of propagations disease. We used the
NetLogo epiDEM-Basic model which is structured on
the KMK model (Yang and Wilensky, 2011). We
performed the simulation for an ART= 5%, and a
population size of 100 people with the following
adjustments: (see Figure 3.). In order to average the
Ry’s outcomes, 30 replications were run.

T

initiak-people 100 recovery-chance 98.0 %

i
infection-chance 2,19% average-recovery-time B84

Figure 3. Adjustments for the KMK model to

With the previously Ro distribution with KMK model
results we setup our small-world network model to fit
with these results. (Figure 4)

[

number-of-nodes 100

initial-outbreal-size E]

highlight Q

= =

— —— — — —§ |
attack-rate-transmision 5.0 %
wiruis-check-Frequency 1 ticks
|
recovery-chance 8.3 2%

gain-resistance-chance 6 %

I
rewiring-probability 0.30

Figure 4. Adjustment controls for the Small-world
network model

o |

=
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5. RESULTS AND ANALYSIS

The results obtained from our epidemic spread models
show a scope of the different scenarios during the
A(HIN1) epidemic outbreak using the disease
parameters and focused on a specific population. For
adjusting the Ro threshold 30 experiments were
performed with the established parameters.

Eoeinfected | | 107 ” ——  Hrofected
= °

o % totalpop

Figure 5. NetLogo Interface simulating KMK SIR
model

100

90

80

N

Figure 6. Averaged dynamic of KMK model with
ART 5% and Rho=1.4. Blue series corresponds to the
averaged proportion of infected people. Red series
corresponds to averaged not infected people. The
averaged dynamics last about 127 hours.

Next we performed our SIR adapted to a small-

world network model with a population of 100 nodes,
an outbreak size of 5 an ART of 5%.
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Figure 6. NetLogo Interface simulating small-
world network model

A
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Figure 7. Plots of averaged dynamic. 30
experiments were performed for each rewiring
probability. Red series corresponds to the dynamic of
infected nodes. Blue series corresponds to susceptible.
Plot A corresponds to a rewiring probability P=0.5 with
Rho=1.4. Plot B corresponds to a rewiring probability
P=0.3 with Rho= 1.25. Plot C corresponds to a rewiring
probability P=0.6 with Rho =1.57. Plot D corresponds
to a rewiring probability P=0.7 with Rho =1.75

After our parameterization of the simulation,
several runs were performed in order to obtain the
corresponding A(HIN1) Rho threshold of 1.4. While
with the heterogeneous mean-field modeling many
parameters needed to be set to acquire the Rho, also s
the dynamical behavior of the spread didn’t show a
regularity in the outcomes, as much as about 30
experiments should be developed in order to average
Rho =1.4 (20.2) (Cérdova et al, 2010).

Conversely, the small-world network model to
keep the averaged Rho at the range of 1.4, just the
rewiring probability should be adjusted, obtaining a
suitable outcomes at the range of P=0.5 with less than
10 repetitions and with an error of less than 0.07, also
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the disease parameters were maintained at its initial
values established as mentioned above.

Once we have a good method to estimate the
threshold number Rho, it is possible to design a
containment strategy with an optimization model
considering that Rho depends on the susceptible
population. Fraser (Fraser, 2007) recommends that to
develop a vaccine distribution strategy, the susceptible
population for the A(HIN1) outbreak occurred in 2009
should be of 70%, which corresponds to a Rho =1.4.

Some remarkable results emerge from the
corresponding plots; When the rewiring probability
increases, outbreak duration lasts longer, as well as the
threshold Rho increases. About the behavior of the
population stages, one can notice that the susceptible
population behaves asymptotically proportional to the
rewiring probability.

Comparing with the literature, it has a proper fit
with the with real data obtained from the A(HINI)
outbreak occurred from March to September 2009.
(Cordova et. al., 2010)

6. CONCLUSIONS

Significant difference should be appreciated for both
spread models, thus the “small-world” network model
shows a better performance and a more accurate
estimation than SIR KMK model. Although the small-
world model doesn’t consider the disease features, it
shows a good performance in the epidemic dynamics
The present work pretends to be a good issue in order to
collaborate with a better estimation of the dynamics
during a new outbreak of A(HIN1); also to generate
more realistic scenarios in order to develop a more
accurate proper planning on containment strategies.

We suggest for a future research to use the simulation of
our model, to build an optimization model with the
objective the amount or fraction of the population
should be vaccinated and how many should be self-
isolated and especially in any time.
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