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Abstract. The knowledge of the variables that impact energy consumption al-

lows a better understanding of how to mitigate energy consumption and emis-

sions production for public passenger transport. 

The current operation of public passenger transport in a large city with unregu-

lated types of public passenger transport like developing countries case, causes 

an increase in energy consumption and emissions generation. Therefore, this 

paper aims to propose a simulation that estimates energy consumption. Differ-

ent spacing stops length configurations are used to compare the energy con-

sumption estimates to acknowledge the impact. The performed simulation is an 

initial approach to how improvement measures impact energy consumption in 

public passenger transport, taking as a first measure stops establishment. The 

results indicate that stop spacings impact energy consumption, when there are 

non-established stops, meaning that the users take the buses where they want 

the consumption increases. However, after 500 meters of spacing, energy con-

sumption does not vary significantly, therefore establishing stops considering a 

demand coverage approach is suitable. 

Keywords: Public Passenger Transport, Energy Consumption, Simulation 

Spacing, Stops. 

1 Introduction 

Public passenger transport is important for a city's development since it helps the 

inhabitants to move from one place to another. However, it imposes a series of nega-

tive impacts that include high energy consumption and emissions production due to 

its operation. In large cities, it is the core of all m movements, but it still depends 

mainly on oil fuels, making it necessary to propose changes that impact energy con-

sumption and emissions generation. To do so, before implementing the changes, sim-

ulation proves to be a reliable source of information to characterize the actual opera-

tion of the system and the impact the improvements may have on its energy consump-

tion. 
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The simulation proposed in this paper is an initial approach to how improvement 

measures impact energy consumption in public passenger transport and the introduc-

tion of fine-grained variables used for energy consumption estimates. Stop spacing is 

the first improvement measure used as a test for energy consumption estimates. Even 

if stops planning is a basic concept in transport planning, there are countries with 

public passenger transport based on a man-truck system, and established stops are not 

respected by the users and the drivers. 

This paper is divided as follows: section 2 presents the literature review regarding 

energy consumption models for public passenger transport and simulation of public 

transport to provide an overview. Section 3 shows the materials and methods used to 

develop the presented simulation. Section 4 presents the pilot simulation developed 

with an experiment and five scenarios regarding stop spacing and its impact on energy 

consumption. Finally, conclusions about how the stop spacing impact energy con-

sumption is presented. 

2 Literature Review 

2.1 Public Passenger Transport 

“Transportation is the lifeblood of cities and regions; since it provides the essential 

connection for its constantly moving population” (Vuchic, 1999). 

City transport is responsible for a part of road transport energy consumption and 

emissions that causes air pollution in urban areas. The importance of public transport 

is increasing due to urbanization and the need for connections to work centers (Qin, 

2008). 

However, there is an increase on environmental pressure from road transports (CO 

emissions) due to its oil dependency (Sandalow, 2008). Public passenger transport 

depends on the amount of potential users in the area it serves (Lao & Liu, 2009) (Kar-

athodorou, et al., 2010) (Karttunen, et al., 2010) and its importance also relies on the 

problems it produces, like congestion, environmental impact, and use of public space. 

Therefore, the need to investigate the efficiency of public passenger transportation 

systems, particularly in larger cities, that are population concentration centers (Ken-

worthy, 2002) (Hu, et al., 2009). 

Public transportation in cities has been studied from several points of view, such as 

the number of stop points, round-trip time, routes, and operating hours to plan the 

public transportation system operations (Lao & Liu, 2009) (Karttunen, et al., 2010). 

However, it has not been studied with an energy consumption mitigation perspec-

tive but making changes may contribute substantially to reducing the negative impact 

on the environment. 

2.2 Energy Consumption Models 

Energy consumption for world transport has grown steadily in recent decades, with 

fuels produced from petroleum being most of the final energy consumption in the 

transport sector. 



3 

Road transport consumes approximately 70% of the energy used in the global 

transport system, of which road passenger transport alone represents 50% of this en-

ergy consumption (Ministerio Federal de Cooperación y Desarrollo, 2016). 

Improvements in the public transportation system can induce a modal shift, leading 

to greater energy efficiency. A good public transport system is attractive, accessible, 

and reliable. 

The World Bank (2018) indicates it is a priority not only to introduce new technol-

ogies but to adapt what already exists and reduce consumption. 

Therefore, energy consumption models have been developed and contribute to or-

ganizing the information to provide a framework for testing the hypothesis. 

The methods for calculating energy consumption and emissions depend on the pol-

lutant, the mode of transport, and the type of vehicle. These methods are arranged into 

two groups (Hidalgo, 2005): 

1. Top-down approach. - Offers a general volume of energy consumption or 

emissions for the entire transport activity or some of its modes; it is based 

on aggregated data or variables. 

2. Bottom-up approach. - Directly calculates emissions and consumption 

from the source (the vehicle). 

Energy consumption estimations use factors such as the type of vehicle and speed 

that enable energy savings in transportation and how policies can affect energy con-

sumption identified as key factors: information and training programs, subsidies; pric-

es and taxes; and administrative regulations (Geltner, 1985). 

Also, Frey, et al. (2007) mention that the factors such as speed, acceleration, and 

altitude impact energy consumption directly (Frey, et al., 2007). Therefore, when 

simulating public passenger transport energy consumption, the inclusion of such fac-

tors must be considered. 

2.3 Simulation of Passenger Transport 

A system simulation requires the development of a model, to represent that model 

through a computer program that provides information about it (Abara , et al., 2017). 

Passenger public transport simulation studies are divided into four groups accord-

ing to the simulation method: discrete models, agent-based models, multilevel mod-

els, and hybrid and energy models. 

Discrete models are used to link supply and demand (Li, et al., 2006), associate ca-

pacities (Castillo , et al., 2011), , to model vehicle arrivals and behavior when imple-

menting the car tracking behavior (Bowman & Miller , 2016) and to find an accepta-

ble solution for the volume of exhaust gases and noise pollution considering the indi-

vidual characteristics of the vehicle (current mileage, type of engine, environmental 

safety class) (Makarovaa , et al., 2020) among other uses. 

Agent-based models are used for assignment to optimize users' travel plans (Nara-

yana, et al., 2017) ,vehicle-sharing operation modes (Hu, et al., 2017), passenger flow 

service indicators definition with behavior of potential passengers data (Tolujew , et 

al., 2018) among others. 

Multilevel and dynamic models are used to integrate macroeconomic, energy sup-

ply and demand, and environmental modules (Schwefel & Schmitz , 1997), to predict 
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traffic conditions (Hunter, et al., 2006), , for the incorporation of different relevant 

subsystems to categorize them ( Halim , et al., 2012), and to support integrated trans-

portation infrastructure and public space design (Yang, et al., 2020) among other uses. 

Finally, hybrid and energy models are used to simulate demand-responsive 

transport systems and analyze their applicability (Dytckov, et al., 2018), to reduce the 

waiting time for buses (Pereira & Chwif , 2018), to provide dynamic operational 

feedback using network performance indexes (Saroj , et al., 2018) and to merge ener-

gy aspects with simulation (Poeting , et al., 2019), among other uses. 

These studies are taken as a basis for the development the presented pilot simula-

tion due to the applications they present. 

3 Materials & Methods 

The simulation is developed in Simulation of Urban Mobility (SUMO) software and 

shows a generic public passenger transport route. SUMO can integrate variables that 

impact energy consumption, such as the altitude of the road, the drives expertise, 

traffic lights, random stops, energy consumption estimations, emissions estimations, 

and traffic in the study area. 

The equations to estimate energy consumption and emissions with information re-

garding the kinetic translational and rotational energy, the energy needed for a vehicle 

to overcome a slope, rolling resistance, and aerodynamic resistance energy are incor-

porated via Phyton. Through its immediate changes in the road, traffic lights, random 

stops, and demand configuration can be performed, making the simulation dynamic. 

To develop the simulation, five conceptual abstractions (general, arches, nodes, 

stops, energy consumption models) of the system were developed to know and char-

acterize how the system works. 

The general conceptual model presents how the buses and passengers are incorpo-

rated into the simulation and its updates as the simulations performs (see Fig. 1) 

Subsequently a conceptual model specific for the arches was developed, in which 

the arc length and travel speed in the arches are calculated (see Fig. 2). A node con-

ceptual model considers two types of nodes (signalized and non-signalized) was de-

veloped to calculate the delay and time consumed in the nodes by the buses (see Fig. 

3). 

The stops conceptual model includes the number of stops (formal or informal) and 

its spacing, the passenger seats on them to calculate the delay in each stop (see Fig. 

4). Finally, the energy consumption model in which the variables for energy con-

sumption of the buses are introduced and the variables of arches, nodes and stops that 

impact energy consumption are actualized for every time step of the simulation (see 

Fig. 5). With these abstractions the pilot model was developed. 
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Fig. 1. General conceptual model. 
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Fig. 2. Arches conceptual model. 
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Fig. 3. Nodes conceptual model. 



8 

 

Fig. 4. Stops conceptual model. 
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.  

Fig. 5. Energy consumption conceptual model. 
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4 Pilot Simulation 

The simulation presented in this paper is developed as a pilot since it is developed in a 

rectangular network (not with a current existing configuration within a city) and con-

siders only the initial and final speed for the energy estimations. The simulation was 

developed as follows (see Fig. 6). 

Through the SUMO-GUI interface, the network is created. The number and spac-

ing of stops (formal or informal) and the pedestrians were created in an XML file 

using the Python idle. 

Using SUMO via Command Prompt, the simulation is run. The results are obtained 

in an XML file and converted via Command Prompt into a CSV file for data prepara-

tion. Finally, the data is used in the Python interface on an energy consumption script 

to obtain the energy consumed by the trucks in the simulation. At this point, the ener-

gy consumption is estimated only using the initial and final speed in each simulation 

step to calculate the total energy consumed. The following assumptions were consid-

ered for the simulation: the data for these assumptions were obtained for the buses 

and stops through fieldwork. For the pedestrians and vehicles, the data was retrieved 

from (Instituto Nacional de Estadística y Geografía , 2017), (Instituto Nacional de 

Estadística y Geografía, 2020) respectively of an area with 22 kilometers of roads: 

• Period: one hour 

• Arches length: 22 kilometers each arch corresponds to 1km 

• Pedestrian per hour:3061 

• Buses per hour:35 

• Vehicles per hour:4741 

Stops duration: the first and last stops are taken as bases (250 and 150 seconds), the 

other stops last 30 seconds. 

With these assumptions a simulation was developed in which the stops spacings 

are considered as an energy consumption factor. Five scenarios to acknowledge the 

spacing impact were developed and correspond to: 

Simulation 1: Unestablished stops every 100 meters (see Fig. 7). 

Simulation 2: Established stops every 1000 meters (see Fig. 8). 

Simulation 3: Established stops every 500 meters since (Molinero, 1997) establish-

es that in urban areas the public passenger transport stops must be set between 400 

and 600 meters (see Fig. 9). 

Simulation 4: Established stops every 350 meters (see Fig. 10). 

Simulation 5: Established stops every 250 meters (see Fig. 11). 

After simulating the five scenarios, results show that the stop spacings do impact 

energy consumption (Table 1) (Figure 12). In experiment one case, in which there are 

no formal stops, the energy consumption is high with respect to the different estab-

lished stops. If the stops are established, the difference in energy consumption varies 

from 60.4% to 67.9% when the unestablished stops are taken as a reference. However, 

the difference in energy consumption in the established stops does not increase signif-

icantly when the spacing varies. 
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If the literature-reported spacing is taken as a reference, the difference in consump-

tion increases for the unestablished stops case and represents 184.5% of the increase 

in energy consumption. 

 

Fig. 6. Simulation development. 

 

Fig. 7. Unestablished stops every 100 meters. 

 

Fig. 8. Established stops every 1000 meters. 
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Fig. 9. Established stops every 500 meters. 

 

Fig. 10. Established stops every 350 meters. 

 

Fig. 11. Established stops every 250 meters. 

Table 1. Energy consumption of the buses with different stops configuration comparison. 

Stops /consumption 
Energy consumption 

(Joules) 

Difference respect 

to e/100 

Difference respect 

to e/500 

Unestablished stops 

every 100 meters 
150,161,906 ------------- 184.5% 

Established stops every 

250 meters. 
59,402,134 60.4% 12.5% 

Established stops every 

350 meters 
58,145,748 61.3% 10.1% 

Established stops every 

500 meters 
52,789,456 64.8% ------------ 

Established stops every 

1000 meters 
48,246,387 67.9% 8.6% 
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Fig. 12. Energy consumption of the buses with different stops configuration comparison. 

5 Conclusions 

The presented pilot simulation provides an insight on how the operation of public 

passenger transport impacts directly in energy consumption. The differences present-

ed regarding the stops spacings are significant, so this factor must be considered when 

proposing improvement measures. It is important to notice that the energy consump-

tion estimates presented in this paper only consider initial and final speeds. So it is 

expected to increase when the other variables are incorporated. Therefore, to test sev-

eral improvement measures to reduce energy consumption and their combination 

should be proven. 

For an energy consumption estimate using simulation the incorporation of several 

variables that impact it is needed to propose feasible solutions regarding public pas-

senger transport energy consumption minimization. 

Therefore, the energy consumption model incorporation will be performed in fu-

ture work, together with an emission estimation script. Also, the simulation would 

include a distribution for time requirements at the stops and stops spacing using cov-

erage areas by demand. 

The simulation will be performed for a case study in Mexico, City. 
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